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Abstract:
Abstract:
Pricing catastrophe swap as an instrument for insurance companies risk manage-
ment, has received trivial attention in the previous studies, but in most of them,
damage severities caused by the disaster has been considered to be fixed. In this
study, through considering jumps for modeling the occurrence of disasters as in
Unger [32] and completing it through considering damages caused by natural disas-
ters as stochastic, an integro-differential model was extracted to value catastrophe
swap contracts. In determining the swap price changes, the Ito command was
followed and to achieve the catastrophic swap model, the generalization of the
Black and Scholes modeling method was used [3]. With regard to the initial and
boundary conditions, extracted model does not have an analytical solution; thus,
its answer was approximated using the finite difference numerical method and the
effect of considering the damage as stochastic on swap value was analyzed. In
addition, the model and the extracted numerical solution were separately imple-
mented on the data about the earthquake damage in the United States and Iran.
The results showed that prices will experience a regular upward trend until dam-
age growth, damage severities, and occurrence probability of a catastrophe are not
so high that the buyer of the swap is forced to pay compensation to the swaps
seller. Of course, the prices will fall sharply as soon as they reach and cross the
threshold.
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1 Introduction

In recent years, the number and severity of natural disasters has increased so signif-

icantly that the number of such disasters from 1980 to 2014 doubled in comparison

to the same period last year. As a result, it is predicted that the economic damage

caused by natural disasters from 2005 to 2030 will be about twice more than that

of the previous period, namely more than 300 billion dollars [30]. Also, the average

loss of the insured in the first six months of the 30-year period from 1988 to 2017

compared to the average loss of the insured in the first six months of the ten-year

period from 2007 to 2017 has increased from 17,500 million dollars to 30,600 million

dollars (balanced with inflation), which indicates this figure has increased for 74 %

[27].

In addition to its direct and indirect impact on economic wealth, this issue has

posed many challenges for insurance companies to provide financial resources to

compensate for these damages and manage their risk. In particular, some of these

natural disasters are so devastating and catastrophic that cannot be coped with

using traditional risk management mechanisms such as insurance and reinsurance

companies. One way to manage this issue is to use the capacity of financial markets

through a process called insurance securitization. Through this strategy, insurance

companies reduce their need to maintain their capital and increase their ability

to enter a new business by converting their insurance revenues into securities and

selling these securities in financial markets and subsequently transferring the associ-

ated risks to investors. As a result, since the early 1990s, insurance companies, and

subsequently reinsurance companies, have been using new financial instruments to

cover the risk of major natural disasters in capital markets. This led to the creation

of a new group of financial instruments whose cash flows depended on the occur-

rence or non-occurrence of large-scale natural disasters. For example, one of these

securities is catastrophic bonds, in which payments are made to investors, unless

a catastrophic event occurs and causes the loss of a part or all of the capital [7].

Other securities used in this regard are catastrophe derivatives, the variety of which

is also expanding in official stock exchanges and over-the-counter markets such as

Chicago Board of Trade (CBOT), Insurance Futures Exchange (IFEX), European

Exchange (EUREX), and New York Mercantile Exchange (NYMEX) [15].

The use of catastrophe swap contracts as a derivative security, is also one of the

developing strategies in insurance securities, in which the approach used in other

swap contracts is modeled. In general, a swap contract is a type of derivative in-

strument, in which one party to the contract exchanges the revenues of its financial

instruments with the revenues of the other party’s financial instruments. Active

participants in the swap contract market include financial institutions or companies.

Thus, investors looking to cover the risk of price fluctuations choose a fixed cash

flow, and other market participants, who take advantage of these opportunities by

accepting risks because of their careers, choose a floating cash flow [22]. For exam-



ple, Deutsche Bank Event Loss Swaps is one of the catastrophe swaps offered by

Deutsche Bank in 2006 to protect customers from losses caused by natural disasters

including floods and earthquakes in the United States. Accordingly, catastrophe

swaps are a special type of swap contracts that allow the insurer (reinsurer) to take

more risk by transferring part of the insurance risk to the other party. Thus, the

investor’s capital is exposed to the risk of natural disasters for certain revenue [7].

These securities, which are part of the contracts used in over-the-counter markets,

will allow insurance companies (normal and reinsurance) to distribute the risk, fi-

nance and compensate for large damages.

Catastrophe swap is fundamentally different from other risk transfer instruments in

contract design, areas of application and market development. In a typical contract,

a support buyer (fixed payer- swap seller) agrees to pay the periodic premium to

the seller of the support (floating payer- swap buyer) in return the predetermined

compensation. All this is subject both to the occurrence of the trigger in the cov-

ered area and to the amount of damages exceeding the threshold specified in the

swap contract. Of course, assuming no arbitrage, the catastrophe swap should act

similarly to catastrophe bonds. However, unlike natural disaster bonds, buying

catastrophe swap does not require initial financial resources [7]. On the other hand,

unlike natural disaster bonds and other insurance derivatives, the catastrophe swap

market is very new, and its trading is based on the quoting method because of being

in over-the-counter markets [15]. In addition, industry experts have stated that the

size of the market is growing rapidly [12].

Despite the development of the use of catastrophe swaps, especially in recent years,

researchers have paid more attention to other catastrophe bonds. For instance,

many studies have examined catastrophe bonds (e.g., the experimental study of

pricing of catastrophe bonds by Lane [24], Lane and Mahul [25] and Young, [37]

computes the indifference price of cat bonds based on exponential utility investor

preferences, investigating that by Egami and Young [17], and applying the basics of

catastrophe bonds in analysis of reinsurance contracts [26]. In other studies, instead

of swap bonds, other catastrophe derivative bonds have been investigated (e.g., us-

ing Markov model for pricing catastrophe derivatives [1], for pricing catastrophe

futures using a jump diffusion process [13,14], for modeling catastrophe options

[9,19], for extracting an analytical solution for pricing catastrophe options using

Fourier transform [4], for providing a pricing model for catastrophe call options

based on the compound Poisson process [29], for pricing Asian-style cat options

[10,11], and some other studies such Härdle and Cabrera [20] and Chang [10]).

Few people have examined catastrophe swap, especially the way it is valued. For

example, Borden and Sarkar [6] and Canter et al. [8] have referred to catastrophe

swap in insurance-linked bonds. Cummins [12] and Cummins and Weiss [15] briefly

described the general mechanism for contracting catastrophe swaps. In addition,

Braun [7] is one of the few scholars to discuss the value of catastrophe swap. Us-

ing various parametric distributions to normalize the historical data of storm and
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earthquake damage in the United States, he concluded that in catastrophe swap

pricing model, the heavy-tailed Burr distribution is appropriate to estimate damage

severities and OrnsteinUhlenbeck process is appropriate to dynamize the intensity

of Poisson’s distribution. What is as important as other derivatives in catastrophe

swap securities modeling is the assumed process of how the underlying asset be-

haves (i.e., the amount of damage caused by natural disasters in the catastrophe

swap). Given the nature of natural disasters, which are low in frequency but high

in severity, researchers use random processes with mutations stochastic processes

with jump sentences to model the value of catastrophe swaps, which indicates that

catastrophes are occurring [32]. However, in all the conducted research in this do-

main, damage severities have been considered fixed in case of occurrence of natural

disasters. Of course, the amount of damage caused by natural disasters is not a

fixed amount and can, in itself, follow a separate random process, which is consid-

ered in this study. In this way, in order to model the catastrophe swap value, it

has been assumed that the catastrophe followed the Poisson process, but damage

severities in the event of a catastrophe are not constant and will be a random pro-

cess.

Accordingly, in the second section of the article, by estimating the severity of catas-

trophic damages in the event of an accident and assuming that the price of the

swap is a function of the damage, fluctuations, and time, the value of the catastro-

phe swap is extracted. In the third section, to solve the extracted model, a partial

integro-differential equation is solved using the finite difference numerical and Euler

methods. In the fourth section, the price sensitivity of the catastrophe swap to the

newly added variable, namely the damages caused by the catastrophe, is analyzed.

In the fifth section, the results obtained on the real data of earthquake damages in

the United States and Iran are implemented and the relevant results are presented.

Finally, in the sixth section, the results will be summarized and analyzed.

2 Evaluation of the catastrophe swap by stochas-
tic damages

Pricing catastrophe swaps, like many other derivative bonds, is based on assuming

a specific model for analyzing the underlying asset behavior. Of course, In catas-

trophe swaps, damages from natural disasters will replace this underlying asset.

Various studies have been done to model this damage. One study in this field is

that of Xu Yue [36]. He examined the distribution of damages caused by catastro-

phes in Norway. In this regard, Zolfaghari and Campbell [38] used historical data

to provide an analysis of the earthquake damage model. Vickery et al. [33] also

provided a model for damages caused by tornados. In 2010, Unger also considered

the damage model as a geometric Brownian motion (GBM) and jump diffusion and

used it to price catastrophe bonds. However, what is important in the assumed pro-

cess for damage behavior is the fact that the damage model should measure small
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changes and large jumps. For example, in the model introduced by Unger [32],

the following random process is considered to explain the behavior of catastrophe

damage:

ds = αsdt+ σsdw + ηCdN (1)

where α is the growth rate of damage, σ is small fluctuations (indicating small

damage), ηC is the jump caused by major accidents and crises and the result

of severe damage, and N is a Poisson process. The characteristic of Ungers [32]

assumed model is that the severity of large damage added to the model by a Poisson

process is considered fixed [28]. However, in the real world, damage severities can be

variable and, as a result, a stochastic process. Accordingly, in this study, a damage

model is designed that considers large damage severities (λ) in the assumed process

for damage behavior as a stochastic process. In this regard, based on Ungers [32], a

model is introduced as follows for damage behavior (s), that large damage severities

(λ) also follows a stochastic process:

ds = αsdt+ σsdw1
t + CeληdN

dλ = µλdt+ γλdw2
t

(2)

where µ and γ are the drift rate and the fluctuation of damage severities, namely

λ, and w1
t and w2

t are Winer’s processes correlated with ρ, and the other variables

are the same as those used in Ungers model. As it can be seen, the new model

introduced in this paper is a two-factor model for damages, which simultaneously

includes occurrence probabilities and damage severities. This is because instead of

considering a fixed value of C as in Ungers model, the Ceλ is used as the amount

of damage severities, and λ changes randomly in the geometric Brownian motion

(GBM). This view in the damage model can be distinguished from Ungers damage

model. By assuming the process introduced in equation 2, it can be stated that the

value of the catastrophe swap shown in c(t, s, λ) will be a function of time, damage

severities, and the fluctuations in large damage severities. Therefore, its changes,

based on Ito formula, will be as follows:

dc =

(
ct + αscs + µλcλ +

1

2
σ2s2css +

1

2
γ2λ2cλλ + ρσsγλcsλ

)
dt

+(γλcλ + σscs)dwt + [c(t, s+ Ceλη, λ)− c(t, s, λ)dN
(3)

To make it even simple, after placing

φ = ct + σsc2 + µλcλ +
1

2
σ2s2css +

1

2
γ2cλλ + ρσsγλcsλ

∆ = γλcλ + σscs

(4)

We can state

dc = φdt+∆dwt + [c(t, s+ Ceλη, λ)− c(t, s, λ)]dN (5)
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Now, similar to Black and Scholes [3] and the their delta risk hedging method,

assume that is a portfolio containing two catastrophe swaps (for example, a catas-

trophe swap for an earthquake called c1 and a catastrophe swap for a flood called

c2). Therefore, the value of the portfolio will be as follows:

π = x1c1 + x2c2 (6)

where x1 and x2 will be the weight of each swap in the portfolio. It should be noted

that in the process of making the above portfolio, the choice of the type of security

is optional. To reach the model for valuing the catastrophe swap, we calculate

changes in the value of the mentioned portfolio:

dπ = x1dc1 + x2dc2

dci = φidt+∆idWt + [ci(t, s+ Ceλη, λ)− ci(t, s, λ)]dN, i = 1, 2
(7)

Assuming a risk-neutral portfolio and considering the return on pi stock portfolio

equal to the risk-free interest rate r, we consider the expected return as follows [5]:

dπ = rπdt (8)

Now, using the pattern of Neisy and Salmani [31] and by placing equation (7) in

equation (8), the random part of the model will be removed and the following

equation will be obtained:

φ1 − (r + λ)c1 + λE[c1(t, s+ Ceλη, λ)]
∆1

=
φ2 − (r + λ)c2 + λE[c2(t, s+ Ceλη, λ)]

∆2

(9)

This equation is called market risk price, which is denoted by q. Continuing the

modeling process, as in Unger [32], the following partial integro-differential equation

will be obtained:

ct + (αs− qσs)cs + (µλ− qγλ)cλ +
1

2
σ2s2css

+
1

2
γ2λ2cλλ + ρσsγλcγλ + J − (r + λ)c = 0

(10)

where

J = λ

∫ ∞

0

c(t, s+ Ceλ, λ)f(Ceλη)dη (11)

exists, and in f(x) = 1
ν
√
2π
e−0.5(Lnx−χ

ν )
2

, χ is mean, and ν is variance. Further-

more, to solve the above model, the required final and boundary conditions will be

as follows:

c(T, s, λ) =

Bfix s < Z

0 s ≥ Z
(12)
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where Z is the threshold and

lim
s→∞

c(t, s, λ) = 0

lim
λ→∞

c(t, s, λ) =
(
Bfix ∗ e−rt

)
Is<Z

(13)

where Is<Z indicates the characteristic function. Now, by placing λ = 0 and once

again s = 0 in the original model, the boundary conditions will be completed as

follows:

ct + (µλ− qγλ)cλ +
1

2
γ2λ2cλλ + J − (r + λ)c = 0 ifs→ 0 (14)

and

ct + (αs− qσs)cs +
1

2
σ2s2css − (r)c = 0 ifλ→ 0 (15)

3 Numerical Solution of the Model

The partial integro-differential equation extracted in the previous section (Equation

10) is an initial and boundary value problem, which is called the new catastrophe

swap model based on stochastic models in this study. Because the initial and

boundary value problem has an answer [23], the new swap model will also have

a unique answer. However, this answer is not a closed and analytical answer,

so it is necessary to get an estimate of the answer by numerical methods. This

numerical method is presented in this section. To do so, a finite difference semi-

discretization method will be used. Therefore, in order to increase the accuracy of

convergence, first s and are discretization and we will reach an ordinary differential

equation system based on time. Then the equation will be solved by Euler’s method.

To achieve this, the range of s , λ changes is shown as [0, smax] and [0, smax],

respectively and 0 < s < smax and 0 < λ < λmax become discrete as follows:

0 < s0 < s1 < s2 < smax

0 < λ0 < λ1 < λ2 < λmax
(16)

Then by changing τ = T − t and placing C(t, s, λ) = U(τ, s, λ) to achieve one of

the convergence conditions and considering the following equations:

∂C

∂t
= −∂U

∂τ
,
∂C

∂s
=
∂C

∂s
,
∂C

∂λ
=
∂U

∂λ
,
∂2C

∂s2
=
∂2U

∂s2
,
∂2C

∂λ2

=
∂2U

∂λ2
,
∂2C

∂s∂λ
=

∂2U

∂s∂λ

(17)

The following PIDE will be reached:

Uτ = g1(s)Us + g2(λ)Uλ + g3(s)Uss + g4(λ)Uλλ + g5(s, λ)Usλ + J + g6(λ)U (18)

where gi, i ∈ {1, . . . , 6} are coefficients and

J = λ

∫ x

0

U(τ, s+ Ceλη, λ)f(Ceλη)dη (19)
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Also, the initial and boundary conditions will be as follows:

U(0, s, λ) =

Bfix s < Z

0 s ≥ Z

lim
s→∞

U(τ, s, λ) = 0

lim
λ→∞

U(τ, s, λ) =
(
Bfix ∗ e−r(T−τ)

)
Is<Z

(20)

The partial integro-differential equation (18) is now written as follows:

Uτ = ℑdU + ℑjU (21)

where

ℑdU = g1(s)Us + g2(λ)Uλ + g3(s)Uss + g4(λ)Uλλ + g5(s, λ)Usλ+ g6(λ)U (22)

and

ℑjU = J (23)

Now, by assuming ui,j = U(τ, si, λj) and using the finite difference method, we will

have:

Us ≈
ui+1,j − ui−1,j

2ds
, Uλ ≈

ui,j+1 − ui,j−1

2dλ
,

Uss ≈
ui+1,j − ui,j + ui−1,j

(ds)2
Uλλ ≈

ui,j+1 − ui,j + ui,j+1

(dλ)2
,

Usλ ≈
ui+1,j+1 − ui−1,j+1 + ui+1,j−1 + ui−1,j−1

4dλds

(24)

Now assume:

u = [u1,1 . . . u1,M−1 . . . uN−1,1 . . . uN−1,M−1]
Tr. (25)

Using the above assumptions, matrices A and B are considered in such a way

that can justify operator (24).

ℑdU → Au+B (26)

Matrix A is known as the sparse matrix, which, according to discrete (26) and

vector B, includes boundary conditions and is easily obtained using Hirsas [21]

method. Also, considering x = s+Ceλη and fi,j = f(si − sj) for the integral part,

we will have the following:

1

Ceλj

∫ ∞

0

U(τ, x, λj)f(x− si)dx

≈ 1

Ceλj

ds

2

[
fi,0u0,j + fi,NuN,j + 2

N−1∑
p=1

fi,pup,j

] (27)
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A numerical method is proposed to solve the new pricing model, for which the

semi-discretization finite difference method will be used. Therefore, to increase

the convergence accuracy, we first discretize S and λ and arrive at a system of

ordinary differential equations in terms of time, then the equation will be solved by

the Euler method. To achieve this, the change intervals S and λ are [0, smax] and

[0, λmax], respectively, in which smax and λmax are derived from market data and

insurance companies. The intervals 0 < s < smax and 0 < λ < λmax are discretized

as follows:

0 < s0 < s1 < s2 < smax
.w0 < λ0 < λ1 < λ2 < λmax

The Integral operator of matrices F and G are as follows:

ℑjU → Fu+G (28)

According to Equations (24) and (25), operator I will be considered as follows:

ℑ =: ℑd + ℑj (29)

Finally, to solve PIDE (18), it is enough to use the following repetitive method:

uk+1 = ∆uk + ϑk (30)

where
uk+1 = [uk11 . . . u

k
N−1M−1]

′

∆ = A+ λF

ϑk = Bk + λGk

(31)

To test general futures of extracted solution, following figure shows the behavior

of the swap price by changing the values of λ and s the remaining time until the

maturity of the swap agreement.

Figure 1: The effect of the extracted model variables on swap value

According to the diagram on the left, the swap price will decrease as the amount

of damage increases, and this decrease is very large at the threshold value. In this
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figure, the fluctuation of the damage is assumed to be constant and the price of the

catastrophic swap sheet is examined in relation to the amount of damage. In the

diagram on the right, disaster swap prices are considered in terms of time. Also, for

fixed amounts for λ and damages, the price of the catastrophe swap is converged

with fixed payments, and finally at maturity date, the price of the swap is equal to

the price of fixed payments, which is the same settlement in the maturity date. The

reason for this lies in that the closer we get to maturity time, or in other words,

the shorter our distance from the maturity time, the less likely the damage will

occur. As a result, the price of swaps will be equal to fixed payments, which is fully

consistent with the general characteristics of catastrophe swaps.

4 Sensitivity analysis of the extracted model

In this section, the sensitivity analysis of λ will be performed for the catastrophe

swap model. For this purpose, the effect of the slight change of dλ in the λ on the

price changes of the catastrophe swap is analyzed to show what effect λ will have on

the extracted price if it is not accurate. To begin, by changing the symbolism, it is

assumed that uλk is the vector price of the catastrophe swap at the time of k is equal

to λ, and uλ+dλk is the vector price of the catastrophe swap at the time of k is equal

to λ+dλ.. Therefore, the repetitive process (30) for each one is performed as follows:

uλk+1 = ψuλk + θk (32)

uλ+dλk+1 = ψ′uλ+dλk + θ′k (33)

As a result, the difference between the two prices will be equal to:

Dk+1 = ψDk + θk (34)

where Dk = uλ+dλk −uλkλ, ψ = ψ′−ψ, and θk = θ′k−θk and its equivalent matrix

form is as follows:

ψ = dλF − dλdτI(M−1)(M−1) (35)

θk = dλGk (36)

Because the initial conditions are independent and the same for both cases

(i.e., uλ+dλ0 = uλ0 ), the value of D1 will be as follows:

D1 = ψ0 + θ0 = θ0 (37)
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By placing D1 in the repetitive process (34), D2 will also be obtained as follows:

D2 = ψ θ0 + θ1 (38)

As this trend continues, the price difference at K will be as follows:

DK =

K∑
l=i

ψ
K−i

θi−1 (39)

By changing the value of K, the difference in other times can be seen. In fact, the

sum indicates the difference between two different values for λ. Therefore, if we do

not pay attention to λ, the real price of the swap will not be achieved.

5 Numerical Results

In this section, using the stated method, the extracted model was implemented on

Vranes and Pielkes [34] real earthquake damage dataset from 1900 to 2005 as well

as on Irans earthquake damage data from 1910 to 2019, which were extracted EM-

DAT database and the model parameters will be estimated. Vranes and Pielke

[34] estimated the economic damage (normalized based on inflation, wealth, and

population) to be 435 billion dollars. During this period, 13 earthquakes with a

damage of more than 1 billion dollars and 5 earthquakes with a damage of more

than 10 billion dollars were recorded. This huge difference between the amount of

damage caused by severe earthquakes is a good justification for preferring a ran-

dom value for the severity of the damage over a fixed value for it. This is also true

for the damage caused by the earthquakes occurring in Iran. Another revealing

point about the earthquake damage information in both data sets is the presence

of unstable fluctuations in both time series. This also explains how the modeling

is implemented in this study.

Based on the mentioned data and to obtain the parameters of the equation related

to λ, the discretization method provided by Azizi and Neisy [2] and Bjorks [5] esti-

mation method were used. By repeating the above-mentioned method, the values

of other parameters such as µ and γ were also determined. The estimated results

are presented in the following table:

It should be noted that because information on economic losses of 112 earthquakes recorded in
Iran did not exist for all periods, this amount, for periods that faced this problem, was estimated
using regression models with explanatory power of about 47 % and based on the information
available for each earthquake (magnitude of the earthquake in Richter, the number of people
killed, and the number of people affected by the earthquake)

This has been verified by the Arch test in both data sets
In short, in this method, the data are categorized based on the minimum amount of time, and

an average and a fluctuation are estimated for each time period. Then, using the least squares
method and nnumbers of α and σ values, a time-dependent function will be created for each
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Table 1: Results of estimating model parameters based on data from the US and
Iran

Estimated parameter the US Iran

α 0.38350 0.0028

σ 0.76690 0.00570

µ 0.00009 0.00010

γ 0.00190 0.00170

q 0.00190 0.00170

χ 0.50006 0.49120

ν 2.45000 0.23300
Notes: This table shows estimation results of extracted model parameters for described data sets.
In estimating these parameters, is considered to be 2.5, λ is limited to zero and a half and the
threshold value is 0.5 (these values are determined by the terms of the swap contract). Also, in
the implementation of the discretization process, the values of N , M , and dtare considered to be
50, 30, and 0.01, respectively.

Earthquake damage data is divided into catastrophic and non-catastrophic. Catas-

trophe damages are data that amount to 4.8776 (approximately 0.5) or more, and

other data less than that will be considered non-catastrophic. This number is the

threshold of the contract, and if the amount of damage caused by the earthquake

is more than this amount, the cash flow from the swap seller to the swap buyer

will change. With the economic growth of the society, the damages caused by the

insured property and assets will increase. Therefore, there is a close and direct

relationship between the amount of damage and growth. The growth rate of the

damage will be indicated by α. Events may occur that deviate from the specified

value α, which is considered to be σ in the damage model. α and σ are obtained

from non-catastrophic damage data. µ is growth rate fluctuations of damage and

γ is standard deviations of damage fluctuations, both of which result from catas-

trophic damage data. χ and ν respectively are average and variance damage data,

When the data is not yet divided into catastrophic and non-catastrophic.

Based on the above estimated parameters, in the following two figures, the price of

the catastrophe swap at the outset of the contract is drawn for different values of

λ:

In the above diagrams, the horizontal axis indicates the severity of the damage

and the probability of occurrence and the vertical axis indicates the damage. Due

to the scattering of data and for ease of analysis, the damage data is assumed to

be in the range of zero to ten, and the fluctuations of damage are segmented in the

range of 0 to 0.5. each of these diagrams point represents a number, which creates

from the intersection of λ and S. As can be seen, when the damage is about 0.5,

due to the starting threshold and the reversal of the cash flow of the swap, the price

tends to be zero. A change in the direction of cash flow means that in the event of

a catastrophe, the support buyer or swap seller pays a fixed amount of cash to the
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Figure 2: Catastrophe Swap Price at time zero based on the estimated Parameters

support seller or swap buyer. However, after the occurrence of the catastrophe and

overtaking the damage threshold, the direction of cash flow will change and the

investor or support buyer will be required to compensate for the damage and pay

the rates at a floating rate. when using the Eulers repetitive method in numerical

methods, there are unique S and λ at each point in any time and in each step.

If at different times and with different S and λs, the swap security is purchased

and the damage has not exceeded the threshold, Whatever we closer to maturity

or settlement (time one), Prices will converge to one point, this is the catastrophe

swap security yield at maturity, which is approximately equal to the amount of

fixed rate payments by the support buyer.

6 Results and Conclusion

The potential of financial markets has led various institutions, including insurance

and reinsurance companies to increasingly use it and manage their risks, especially

in the event of severe and catastrophic damages by financial solutions. One of the

solutions used in this field is catastrophe swap contracts. Despite the capabilities of

the catastrophe swap and its expanding use in financial markets, little research has

dealt with the valuation of these securities. In the few conducted studies in this do-

main, the assumed random process to model the behavior of catastrophe damages

contained only one statement for occurrence probabilities, but the amount of this

damage was considered fixed. In this study, this shortcoming was addressed by con-

sidering the amount of stochastic catastrophic damages. To do so, the occurrence

probabilities and the resulting damage are considered as a stochastic process of two-

factor diffusion jump, and by changing the fixed amount of catastrophe damage in

previous studies (i.e., parameter c) to ceλ and considering a random behavior for

λ, the damage severities changed from a fixed variable to a random one. In other

words, changes in the amount of the catastrophe damage were added to previous

models, such as Ungers [32] model, as a separate random process. In order to
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determine the swap price, a partial integro-differential equation was extracted to

value catastrophe swaps using Black and Scholes [3] model and Ito formula. There-

after, the answer of the extracted model was estimated by numerical methods, and

the equation turned into an ordinary differential equation using semi-discretization.

Then, the finite difference numerical method and Eulers method were used to solve

the extracted catastrophe swap pricing model. In addition, the model and extracted

numerical solution were implemented on the data related to earthquake damages

in the United States and Iran.

In general, the results of modeling and implementation of the model indicate that in

this model, as expected, the price trend for damage below the threshold is a regular

trend that is commensurate with the damage occurrence probability and severity. In

other words, prices will continue to rise regularly until the damage growth, severity,

and occurrence probability have reached the point where the swap buyer is forced

to pay compensation to the swap seller. However, prices will fall sharply as soon

as the specified threshold in the swap agreement is reached and exceeded.

In conclusion, it is recommended that in future research, the extracted model be

applied to other natural disasters and other countries. In addition, if there are

reliable price data for catastrophe swap contracts in a market, the price of the

catastrophe swap contracts could be compared to the results of the extracted model

in this paper and previous model with fixed catastrophe damage. It is also possi-

ble to modify this model and expanded to include pricing for other items, such as

catastrophe bonds, if the yield function and the initial boundary conditions change.

Notes: In this figure, left diagram shows effect of s on swap values (U) for

different values of λ assuming that other factors are constant. In the right diagram,

the effect of τ on U is presented for different combinations of s and λ. (Figure

caption 1)

Notes: In these diagrams, the current catastrophe swap price is presented, based

on extracted model and estimated parameters of data sets of US and Iran. The

left diagram shows results for US and right diagram shows results of Iran. In both

diagrams, the horizontal axis shows the value of λ and the vertical axis is the amount

of damage, and the estimated value of the catastrophe swap is determined by the

color of the diagram, based on the sidebar. In fact, considering the value of λ and

the damage, the coordinates of a given point in the diagram will be located, and the

color of that given point will be compared with that of the sidebar and finally the

swaps value will be obtained. (Figure caption 2)
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