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Abstract:
Abstract:
In this paper, a three coupled Kaldor-Kalecki model with multiple delays is inves-
tigated. By means of the generalized Chafee’s criterion, some sufficient conditions
to guarantee the existence of oscillatory solution for the model are obtained. Com-
puter simulations are provided to demonstrate the proposed results.
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1 Introduction

It is known that the original Kaldor-Kalecki model of business cycle was an ex-

ample of a difference-differential model [1,2]. The authors proposed and studied

business models using ordinary differential equations, nonlinear investment and sav-

ing functions. They showed that periodic solutions exist under the assumption of

nonlinearity. Since then, similar models were also analyzed by several researchers

and the existence of limit cycles was established due to the nonlinearity, see [3, 4,

5]. There are many researchers who have studied the bifurcating periodic solutions

of Kaldor-Kalecki models [6-14]. For example, Wang and Wu have investigated the

following Kaldor-Kalecki model:{
y′(t) = α(I(y(t), k(t)))− S(y(t), k(t)),
k′(t) = I(y(t− τ))− qk(t).

(1)

where y is the gross product, k is the capital stock, α > 0 is the adjustment

coefficient in the goods market, o < q < 1 is the depreciation rate of capital

stock, I(y, k) and S(y, k) are investment and saving functions, and τ > 0 is a

time lag representing delay for the investment due to the past investment decision.

Stability analysis for the equilibrium point was carried out. The authors showed

that Hopf bifurcation occurred and periodic solutions emerged as the delay crosses
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some critical values. By deriving the normal forms for the system, the direction

of the Hopf bifurcation and the stability of the bifurcating periodic solutions were

established [6]. Cao and Sun have considered a Kaldor-Kalecki model of business

cycle with two discrete time delays as follows:{
y′(t) = α(I(y(t), k(t)))− S(y(t), k(t)),
k′(t) = I(y(t− τ1), k(t− τ2))− qk(t).

(2)

By analyzing the corresponding characteristic equations, the local stability of the

positive equilibrium was discussed. Choosing the adjustment coefficient in the

goods market α as the bifurcation parameter, the existence of Hopf bifurcation was

then investigated in detail. Secondly, by combining the normal form method with

the center manifold theorem, the direction of the bifurcation and the stability of

the bifurcated periodic solutions were determined [7]. Yu and Peng [8] introduced

a distributed delay and modified the Kaldor-Kalecki model in the following form:{
y′(t) = α(I(y(t), k(t)))− S(y(t), k(t)),
k′(t) = I(y(t− τ),

∫ t
−∞ F (t− s)k(s)ds)− qk(t).

(3)

With the corresponding characteristic equation analyzed, the local stability of the

positive equilibrium was investigated. The authors found that there exist Hopf

bifurcations when the discrete time delay passes a sequence of critical values in

model (3). By applying the method of multiple scales, the explicit formulae which

determine the direction of Hopf bifurcation and the stability of bifurcating periodic

solutions were derived. Due to the importance of anticipation for making decisions

and organizational transformations, the Kaldor-Kalecki model of business cycle was

studied in view of showing its anticipatory capabilities [15]. The dynamics behaviors

of Kaldor-Kalecki business cycle model with diffusion effect and time delay under

the Neumann boundary conditions were investigated. The time delay can give

rise to the Hopf bifurcation when the time delay passed a critical value [16]. For

the diffusive Kaldor-Kalecki model with a delay included in both gross product and

capital stock functions, the stability and Hopf bifurcation and the reaction-diffusion

domain were considered [17]. For an extended version of Kaldor’s economic growth

model, the role of the government and its simultaneous monetary, fiscal policies can

affect the economic stability [18]. In recent years, when local economies are subject

to various economic dependencies due to various factors, we see that macroeconomic

models cannot be treated as isolated systems anymore. Therefore, Zduniak et al.

have investigated the two coupled Kaldor-Kalecki model with delay [19]:
y′1(t) = α1(F1(y1(t))− δ1y2(t)− γ1y1(t)),
y′2(t) = F1(y1(t− τ))− δ1y2(t− τ)− δy2(t),
y′3(t) = α2(F2(y2(t))− δ2y4(t)− γ2y3(t)),
y′4(t) = F2(y2(t− τ))− δ2y4(t− τ)− δy4(t) + s(y1(t)− y3(t)).

(4)
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where Fi are investment functions, and it is taken from the published literature as

Fi(t) =
eyi(t)

1+eyi(t)
. Note that s is a coupling coefficient, α1 and α2 are the adjustment

coefficients (correction factors), δ ∈ (0, 1) is the depreciation rate of capital stock,

γ1, γ2, δ1 and δ2 are constants, and τ denotes the time delay. The authors considered

two types of investment functions that lead to different behavior of the system. The

model with unidirectional coupling to investigate the influence of a global economy

on a local economy was also considered. In the present paper, we extend model (4)

to the three generalized coupled Kaldor-Kalecki model with delays:

y′1(t) = α1(F1(y1(t))− δ1y2(t)− γ1y1(t)),
y′2(t) = F1(y1(t− τ1))− δ1y2(t− τ2)− r1y2(t) + s1(y1(t)− y3(t)),
y′3(t) = α2(F3(y3(t))− δ2y4(t)− γ2y3(t)),
y′4(t) = F3(y3(t− τ3))− δ2y4(t− τ4)− r2y4(t) + s2(y3(t)− y5(t)),
y′5(t) = α3(F5(y5(t))− δ3y6(t)− γ3y5(t)),
y′6(t) = F5(y5(t− τ5))− δ3y6(t− τ6)− r3y6(t) + s3(y5(t)− y1(t)).

(5)

where F1(y1(t)) = ey1(t)

1+ey1(t) , F3(y3(t)) = ey3(t)

1+ey3(t) , and F5(y5(t)) = ey5(t)

1+ey5(t) . And,

αi, δi, ri, si are positive constants. Our goal is to consider the dynamic behavior

of model (5). By means of the mathematical analysis method, the existence of

periodic oscillatory solutions has been derived. We point out that the bifurcating

method is hard to deal with in model (5) since there are six delays.

2 Preliminaries

If y∗1 , y
∗
2 , · · · , y∗6 is a positive equilibrium point of system (5), and make the change

of ui(t) = yi(t)− y∗i , then by linearizing system (5) around (0, 0, · · · , 0) we have

u′1(t) = α1F
′
1(y

∗
1)u1(t)− α1δ1u2(t)− α1γ1u1(t),

u′2(t) = F ′
1(y

∗
1)u1(t− τ1)− δ1u2(t− τ2) + s1u1(t)− r1u2(t)− s1u3(t),

u′3(t) = α2F ′
3(y

∗
3)u3(t)− α2δ2u4(t)− α2γ2u3(t),

u′4(t) = F ′
3(y

∗
3)u3(t− τ3)− δ2u4(t− τ4) + s2u3(t)− r2u4(t)− s2u5(t),

u′5(t) = α3F ′
5(y

∗
5)u5(t)− α3δ3u6(t)− α3γ3u5(t),

u′6(t) = F ′
5(y

∗
5)u5(t− τ5)− δ3u6(t− τ6) + s3u5(t)− r3u6(t)− s3u1(t).

(6)

The matrix form of system (6) is the following:

u′(t) = Au(t) +Bu(t− τ). (7)

where u(t) = [u1(t), u2(t), · · · , u6(t)]T , u(t− τ) = [u1(t− τ1), u2(t− τ2), · · · , u6(t−
τ6)]

T . Both A = (aij)6×6 and B = (bij)6×6 are 6× 6 matrices as follows:

A = (aij)6×6 =



a1 −b1 0 0 0 0

s1 −r1 −s1 0 0 0

0 0 a3 −b2 0 0

0 0 s2 −r2 −s2 0

0 0 0 0 a5 −b3

−s3 0 0 0 s3 −r3


,
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where a1 = α1F
′

1(y
∗
1) − α1γ1, b1 = α1δ1, a3 = α2F

′

3(y
∗
3) − α2γ2, b2 = α2δ2, a5 =

α3F
′
5(y

∗
5)− α3γ3, b3 = α3δ3.

B = (bij)6×6 =



0 0 0 0 0 0

a2 −δ1 0 0 0 0

0 0 0 0 0 0

0 0 a4 −δ2 0 0

0 0 0 0 0 0

0 0 0 0 a6 −δ3


.

where a2 = F ′
1(y

∗
1), a4 = F ′

3(y
∗
3), a6 = F ′

5(y
∗
5).

Definition 1 The trivial solution of system (6) is unstable, if there exists at least

one component of the trivial solution which is unstable.

Lemma 1 Assume that matrix C = (A+B) is a nonsingular matrix, then system

(5) has a unique positive equilibrium point.

Proof An equilibrium point u∗ = [u∗1, u
∗
2, · · · , u∗6]T of system (7) is a constant

solution of the following algebraic equation

Au∗ +Bu∗ = Cu∗ = 0. (8)

Since C is a nonsingular matrix, based on the basic algebraic knowledge, system
(8) has a unique trivial solution, implying that system (5) has a unique equilibrium
point y∗1 , y

∗
2 , · · · , y∗6 . Indeed, if ȳ∗1 , ȳ

∗
2 , · · · , ȳ∗6 is another set of equilibrium point of

system (5), then we have

α1(F1(y∗1)− F1(ȳ∗1))− α1δ1(y∗2 − ȳ∗2)− α1γ1(y∗1 − ȳ∗1) = 0,

F1(y∗1)− F1(ȳ∗1)− δ1(y∗2 − ȳ∗2)− r1(y∗2 − ȳ∗2) + s1(y∗1 − ȳ∗1)− s1(y∗3 − ȳ∗3) = 0,

α2(F3(y∗3)− F3(ȳ∗3))− α2δ2(y∗4 − ȳ∗4)− α2γ2(y∗3 − ȳ∗3) = 0,

F3(y∗3)− F3(ȳ∗3)− δ2(y∗4 − ȳ∗4)− r2(y∗4 − ȳ∗4) + s2(y∗3 − ȳ∗3)− s2(y∗5 − ȳ∗5) = 0,

α3(F5(y∗5)− F5(ȳ∗5))− α3δ3(y∗6 − ȳ∗6)− α3γ3(y∗5 − ȳ∗5) = 0,

F5(y∗5)− F5(ȳ∗5)− δ3(y∗6 − ȳ∗6)− r3(y∗6 − ȳ∗6) + s3(y∗5 − ȳ∗6)− s3(y∗1 − ȳ∗1) = 0.

(9)

Noting that Fi(yi(t)) =
eyi(t)

1+eyi(t)
, then F ′

i (yi(t)) =
eyi(t)

(1+eyi(t))2
(i = 1, 3, 5). Therefore,

0 < Fi(yi(t)) < 1 are monotone increasing functions. By the mean value theorem,
Fi(y

∗
i ) − Fi(ȳ

∗
i ) = F ′

i (ηi)(y
∗
i − ȳ∗i ), where ηi ∈ (y∗i , ȳ

∗
i )(i = 1, 3, 5). Thus, from

system (9) we have

α1F ′
1(η1)(y

∗
1 − ȳ∗1)− α1δ1(y∗2 − ȳ∗2)− α1γ1(y∗1 − ȳ∗1) = 0,

F ′
1(η1)(y

∗
1 − ȳ∗1)− δ1(y∗2 − ȳ∗2)− r1(y∗2 − ȳ∗2) + s1(y∗1 − ȳ∗1)− s1(y∗3 − ȳ∗3) = 0,

α2F ′
3(η3)(y

∗
3 − ȳ∗3)− α2δ2(y∗4 − ȳ∗4)− α2γ2(y∗3 − ȳ∗3) = 0,

F ′
3(η3)(y

∗
3 − ȳ∗3)− δ2(y∗4 − ȳ∗4)− r2(y∗4 − ȳ∗4) + s2(y∗3 − ȳ∗3)− s2(y∗5 − ȳ∗5) = 0,

α3F ′
5(η5)(y

∗
5 − ȳ∗5)− α3δ3(y∗6 − ȳ∗6)− α3γ3(y∗5 − ȳ∗5) = 0,

F ′
5(η5)(y

∗
5 − ȳ∗5)− δ3(y∗6 − ȳ∗6)− r3(y∗6 − ȳ∗6) + s3(y∗5 − ȳ∗6)− s3(y∗1 − ȳ∗1) = 0.

(10)

Noting that if y∗i is close sufficiently to ȳ∗i , then F ′
i (ηi) = Fi(y

∗
i ), i = 1, 3, 5.

Therefore, the coefficient matrix of system (10) about variables (y∗i − ȳ∗i ) is exactly
C = A + B. Since C is a nonsingular matrix, implies that y∗i − ȳ∗i = 0. Namely
y∗i = ȳ∗i . So system (5) has a unique positive equilibrium point. Our simulation
also indicates the uniqueness of the positive equilibrium point.
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Lemma 2 Assume that αi > 0, ri > 0, δi > 0, γi > 0 (i = 1, 2, 3), then all
solutions of system (5) are bounded.
Proof To prove the boundedness of the solutions in system (5), we construct a

Lyapunov function V (t) =
∑6
i=1

1
2y

2
i . Noting that Fi(yi(t)) ≤ 1, calculating the

derivative of V (t) through system (5) we get

V ′(t)|(5) =
6∑

i=1

yiy
′
i = y1[α1(F1(y1(t))− δ1y2(t)− γ1y1(t))]

+ y2[F1(y1(t− τ1))− δ1y2(t− τ2)− r1y2(t) + s1(y1(t)− y3(t))]

+ · · ·+ y6[F5(y5(t− τ5))− δ3y6(t− τ6)− r3y6(t) + s3(y5(t)− y1(t))]

≤ −α1γ1y
2
1 − r1y

2
2 − α2γ2y

2
3 − r2y

2
4 − α3γ3y

2
5 − r3y

2
6 − α1δ1y1y2 − · · ·

+α1y1 + α2y3 + α3y5 (11)

Obviously, there exists a positive number L such that V ′(t)|(5) < 0 when yi > L.

This means that the all solutions of system (5) are bounded.

Lemma 3 For each eigenvalue λ of matrixA ∈ Rn×n, define µ(A) = limθ→0+
∥I+θA∥−1

θ ,

then the inequality holds:

Reλi(A) ≤ µ(A), i ∈ {1, 2, · · · , n.} (12)

Proof See [20].

3 Existence of oscillatory solutions

Theorem 1 Assume that the conditions of Lemma 1 and Lemma 2 hold. Let

α1, α2, · · · , α6 represent the eigenvalues of matrix A, and β1, β2, · · · , β6 the eigen-

values of matrix B. If there exists one eigenvalue, say α1 which is a positive real

number, or α1 is a complex number which has a positive real part, then the triv-

ial solution of system (6) is unstable, implying that the unique equilibrium point

y∗1 , y
∗
2 , · · · , y∗6 of system (5) is unstable, and system (5) generates a limit cycle,

namely, a periodic solution.

Proof It is known that the trivial solution of the linearized system (6) is unstable,

then the positive equilibrium point of original system (5) is unstable. Therefore,

for proving the instability of the unique positive equilibrium point of system (5) we

only need to prove the instability of the trivial solution of system (6). Considering

an auxiliary equation of the system (6) as follows:

u′(t) = Au(t) +Bu(t− τ∗) (13)

where τ∗ ≤ min{τ1, τ2, · · · , τ6}), u(t− τ∗) = [u1(t− τ∗), u2(t− τ∗), · · · , u6(t− τ∗)]T .
Based on the property of delayed differential equation, if the trivial solution of (13)

is unstable then the trivial solution of system (6) is unstable [21]. Thus in the

following we discuss the instability of the trivial solution of system (13). Since the

eigenvalues of matrix A are α1, α2, · · · , α6, and the eigenvalues of matrix B are
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β1, β2, · · · , β6, system (13) has the following characteristic equation:

6∏
i=1

(λ− αi − βie−λτ∗) = 0 (14)

Noting that there exist three row entries of matrix B which are zeros, there is a

characteristic value, say β1 = 0. Hence, we have

λ− α1 − β1e−λτ∗ = λ− α1 = 0 (15)

This means that there exists an eigenvalue which is a positive number or is a com-

plex number that has a positive real part, implying that the trivial solution of

system (13) is unstable. This suggests that the trivial solution of system (6) is un-

stable, implying that the unique positive equilibrium point of system (5) is unstable.

The instability of the unique positive equilibrium point with the boundedness of the

solution will force system (5) to generate a limit cycle, namely, a periodic solution

[22, 23].

Theorem 2 Assume that the conditions of Lemma 1 and Lemma 2 hold. If the

following condition holds

0 < µ(A)+ ∥ B ∥ . (16)

where ∥ B ∥= maxj
∑6
i=1 |bij |. Then the trivial solution of system (6) is unstable,

implying that the unique positive equilibrium point of system (5) is unstable, and

system (5) generates a limit cycle, namely, a periodic solution.

Proof We must prove that the trivial solution of auxiliary system (13) is unstable.

The characteristic equation associated with system (13) is the following:

det(λI6 −A−Be−λτ∗) = 0 (17)

where I6 is the 6× 6 identity matrix. Set

f(λ) = det(λI6 −A−Be−λτ∗) (18)

If the trivial solution of auxiliary system (13) is unstable, based on Theorem 1 there

exists a root of f(λ) satisfying Re(λ) > 0. From lemma 3, we get

Re(λ) ≤ µ(A+Be−λτ∗)

= lim
θ→0+

∥I + θ(A+Be−λτ∗)∥ − 1

θ

≤ µ(A) + ∥B∥ max
1≤k≤6

|e(−λkτ∗)|

≤ µ(A) + ∥B∥ (19)

Thus, condition (16) holds. The trivial solution of auxiliary system (13) is unstable,

implying that the trivial solution of system (6) is unstable, this means that the

unique positive equilibrium point of system (5) is unstable. Based on the extended

Chafee’s criterion, system (5) generates a limit cycle, namely, a periodic solution

[23]. The proof is completed.
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4 Simulation result

This simulation is performed based on system (5). Firstly we select the param-

eters α1 = 0.98, α2 = 1.25, α3 = 1.26, δ1 = 0.15, δ2 = 0.16, δ3 = 0.17; γ1 =

0.48, γ2 = 0.42, γ3 = 0.38, r1 = 0.28, r2 = 0.32, r3 = 0.25, s1 = 2.85, s2 = 2.78, s3 =

2.76. The unique positive equilibrium point is y∗1 = 1.1096, y∗2 = 1.1632, y∗3 =

1.4216, y∗4 = 1.7243, y∗5 = 1.1283, y∗6 = 1.9222. The characteristic values of ma-

trix C are 0.3145,−1.0345,−0.2850 ± 0.7562i,−0.1450 ± 0.6955i. Therefore, C is

a nonsingular matrix. The characteristic values of matrix A are 0.0778 ± 0.8937i,

−0.4321±0.8973i, −0.0556,−0.3058. Since there is a positive real part of a complex

characteristic value of matrix A, the conditions of Theorem 1 are satisfied. When we

select time delays as τ1 = 4.75, τ2 = 4.65, τ3 = 4.85, τ4 = 4.55, τ5 = 4.62, τ6 = 4.68,

and τ1 = 4.35, τ2 = 5.25, τ3 = 4.46, τ4 = 5.18, τ5 = 4.12, τ6 = 4.38, respectively.

There are periodic oscillatory solutions of system (5) (see Fig. 1 and Fig. 2).

Then we only change α1 = 2.45, α2 = 2.65, α3 = 2.55, the other parameters are

the same as in figure 1, we see that the oscillatory frequency is changed when time

delays are selected as τ1 = 1.95, τ2 = 1.85, τ3 = 1.88, τ4 = 1.86, τ5 = 1.92, τ6 = 1.98

(see Fig. 3). Then we select δ1 = 0.22, δ2 = 0.18, δ3 = 0.20 and the other parameters

are kept as figure 3. We see that the unique positive equilibrium point is very

close to zero and the oscillatory behavior still maintains. However, the oscillatory

frequency and amplitude both are changed (see Fig. 4). This means that the

values of δi are strong effect the oscillatory behavior. Now we select another set of

parameters as α1 = 2.15, α2 = 2.18, α3 = 2.25, δ1 = 0.28, δ2 = 0.25, δ3 = 0.24, γ1 =

0.56, γ2 = 0.64, γ3 = 0.45, r1 = 0.38, r2 = 0.50, r3 = 0.48, s1 = 7.65, s2 = 7.85, s3 =

6.75. The unique positive equilibrium point is y∗1 = 0.7158, y∗2 = 0.7012, y∗3 =

0.8665, y∗4 = 0.7049, y∗5 = 0.8149, y∗6 = 1.3876. Then µ(A)+ ∥ B ∥= 0.8424 > 0.

Therefore, the conditions of Theorem 2 are satisfied. The delays are selected as

τ1 = 1.75, τ2 = 1.78, τ3 = 1.68, τ4 = 1.76, τ5 = 1.72, τ6 = 1.65, and τ1 = 1.15, τ2 =

1.25, τ3 = 1.35, τ4 = 1.35, τ5 = 1.28, τ6 = 1.25, respectively. There exist periodic

oscillatory solutions (see Fig. 5 and Fig. 6).

5 Conclusion

In this paper, we have discussed the dynamical behavior of a three coupled Kaldor-

Kalecki model with time delays. The existence of a limit cycle which is easy to

check, as compared to the general bifurcating method. Some simulations are pro-

vided to indicate the result of the criterion. Time delays only affect the oscillatory

frequency when there exists a limit cycle of the system. The simulations also indi-

cate that the present theorems are only sufficient conditions.
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