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Abstract:
Abstract:
The bond market is an important part of the financial markets. The coupon bonds
are issued by companies or banks for increasing capital, and the interest is paid
by banks or companies, periodically. In terms of maturities, bonds are divided
into three categories as follows: short term, medium term, and long term In this
paper, we model the fractional bond pricing under fractional stochastic diferential
equation. We implement the multiquadric approximation for solving the fractional
bond pricing equation. The equation is discretized in the time direction base on
modified Riemann-Liouville derivative and finite diference methods and is approx-
imated by using the multiquadric approximation method in the space direction
which achives the semi-discrete solution. We investigate the unconditional stabil-
ity and convergence of the proposed method. The method presented in the article
has been implemented on two examples with different values, which confirm the
results of the effectiveness of the method and show that appropriate results can be
obtained with the MQ method. it should be noted that all calculations were done
with the help of matlab software. Numerical results demonstrate the efficiency
and ability of the presented method.
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1 Introduction

Fractional Differential Calculus (FDC) was born in the 17th century and its ini-

tial discussions were related to the works of Leibniz, Euler, Lagrange, Laplace,

Abel, Liouville, Riemann, and others. In recent decades, the fractional differential

equations have been considered in different fields such as fluid flow, engineering,

electromagnetics, economics, and finance [1]. They have been also used in many

different issues, such as telegraph, diffusion, and the diffusion–wave fractional equa-
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tion [2–4,4,5]. In finance, Wyss (2000) provided the time–fractional Black–Scholes

equation for pricing European call option, and Jumarie (2010) presented time–

fractional and space–fractional Black–Scholes equations [6, 7]. Many researchers

have solved the fractional Black–Scholes equation and examined its stability and

convergence [8–10, 12, 13]. In this paper, we intend to present a model for the

fractional bond pricing.

The bond market is an important part of the financial markets. The coupon

bonds are issued by companies or banks for increasing capital, and the interest is

paid by banks or companies, periodically. When, the bond has no interest, it will be

a zero coupon bond. In terms of maturities, bonds are divided into three categories

as follows: short term, medium term, and long term [24]. In the classical model

of bond pricing, the short interest rate is a function of standard Brownian motion.

This motion lacks long–range dependence and loses its previous condition. The

existence of a long–range dependence in asset returns has important applications in

examining the market, bond pricing, and selecting asset portfolio [14]. Mandelbrot

was the first one that to offers the idea of the long–range dependence in asset

returns [15].

The fractional Brownian motion has stationary increments and long–range de-

pendence which is compatible with market reality. Existence of this process in the

fractional pricing model will make the price more realistic [12]. According to the

mentioned contents in this work, we use the fractional interest rate instead of the

standard interest rate. Therefore, the fractional bond pricing equation becomes a

generalized classical bond pricing equation by replacing the fractional interest rate

in the standard interest rate.

The fractional bond pricing model can be solved by different methods. In this

paper, we use the multi–quadric (MQ) approximation method because this method

of solution works well, in particular when the data points are scattered. This

method was introduced by Hardy (1971). He did not relate the base function to

the coordinates (space) of the points and set it as a function of distance (radial)

by using the concept of norm. The proposed function was φ(p) =
√
(p2 + C2).

It is the best method for the numerical solution of ordinary differential equations

and partial differential equations [21,23]. We will describe some advantages of this

method in section 3.1.

The paper is organized as follows: In section 2, we model the fractional bond

pricing. In section 3, first, the multiquadric approximation method is introduced.

Then, we describe the time discretization process and a boundary value problem

(BVP) is obtained which is solved by the multiquadric approximation method. In

section 4, we investigate the unconditional stability and convergence. In section 5,

the numerical result is described. The last section includes conclusion and recom-

mendation for future study.
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2 The model

The classical short interest rate model described by the following stochastic differ-

ential equation [13,24]:

dr = µ(r, t)dt+ ρ(r, t)dWt,

where dWt is the standard Brownian motion and µ(r, t) and ρ(r, t) are drift and

variance parameters, respectively. In the fractional condition, such as the frac-

tional underlying asset in [7, 25], suppose that r = rt = r(t) follows the fractional

stochastic differential equation:

dr = µ(r, t)dt+ ρ(r, t)w(t).(dt)
α
2 , (1)

where w(t) is a normalized Gaussian white noise with unit variance and zero mean.

Unfortunately, the exponents 1 and α
2 of dt are not consistent with fractional Tay-

lor’s series. So, we use two formulas to solve this problem as follows:

dαr = Γ(1 + α)dr, 0 < α ⩽ 1, (2)

dαr

drα
=

1

Γ(2− α)
r(1−α), 0 < α ⩽ 1. (3)

For the proof of (1) and (2), see [25]. By substituting (2) in (1), we have

dr = µ(r, t)(Γ(1 + α))(−1)dαt+ ρ(r, t)ω(t)(dt)
α
2 ; (4)

now, by substituting (3) in (4), we obtain

dr =
1

Γ(1 + α)Γ(2− α)
µ(r, t)t(1−α)(dt)α + ρ(r, t)ω(t)(dt)

α
2 , 0 < α ⩽ 1. (5)

According to Lemma 3.2 in [7], equation (5) is consistent with fractional Taylor’s

series. By combining (2) and (3), we obtain

dr =
r(1−α)

Γ(1 + α)Γ(2− α)
(dr)α, 0 < α ⩽ 1. (6)

Now, we assume that the bond pricing V (r, t) is twice differentiable with respect

to r and has a fractional derivative of order α with respect to t.

When the interest rate follows equation (1), the bond has the price of V (r, t).

According to the assumptions, fractional Taylor’s formula, and Itô’s lemma, it can

be written as follows [7]:

dV =
1

Γ(1 + α)
V

(α)
t (dt)α + Vrdr +

1

2
Vrr(dr)

2; (7)

by replacing the equation (7) by (1), we have

dV =
1

Γ(1 + α)
V

(α)
t (dt)α + Vrµdt+ Vrρw(t).(dt)

(α
2 ) +

1

2
Vrrρ

2(dt)α. (8)
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It cannot be used to hedge with the bond because the interest rate is not a traded

security. So, we use different maturities (T1 and T2) for hedging bonds. We buy a

bond of value V1 with a maturity T1 and sell the another bond of value V2 with a

maturity T2, where V1 = V (r, t; Π1) and V2 = V (r, t; Π2) [24].

Therefore, the portfolio (Π) value is calculated as follows [13]:

Π = V1 −∆V2, (9)

where ∆ is a covering risk.

The change of portfolio value in time dt is as follows:

dΠ = dV1 −∆dV2. (10)

Then we substitute (8) into (10),

dΠ =
(

1
Γ(1+α)V

(α)
1t (dt)α + V1rµdt+ V1rρw(t)(dt)

(α
2 ) + 1

2V1rrρ
2(dt)α

)
−∆

(
1

Γ(1+α)V
(α)
2t (dt)α + V2rµdt+ V2rρw(t)(dt)

(α
2 ) + 1

2V2rrρ
2(dt)α

)
.

(11)

By selecting ∆ = V1r

V2r
in (11), the stochastic component is eliminated:

dΠ = 1
Γ(1+α)V

(α)
1t (dt)α + 1

2V1rrρ
2(dt)α

−V1r

V2r

1
Γ(1+α)V

(α)
2t (dt)α − 1

2
V1r

V2r
V2rrρ

2(dt)α.
(12)

Since the portfolio is instantaneously riskless, we should obtain the riskless short

interest rate, which is as follows:

dΠ = rΠdt = r(V1 −
V1r
V2r

V2)dt. (13)

Replacing (6) into (41), implies

dΠ = r

(
V1 −

V1r
V2r

V2

)
t1−α

Γ(1 + α)Γ(2− α)
(dt)α, (14)

now, by replacing (12) by (14), we obtain(
1

Γ(1+α)V
(α)
1t (dt)α + 1

2V1rrρ
2(dt)α − r t(1−α)

Γ(1+α)Γ(2−α)V1(dt)
α
)

+
(
−V1r

V2r

1
Γ(1+α)V

(α)
2t (dt)α − 1

2
V1r

V2r
V2rrρ

2(dt)α + r t1−α

Γ(1+α)Γ(2−α)
V1r

V2r
V2(dt)

α
)
= 0.

(15)

Multiplying (15) by Γ(1+α)
(dt)α yields(
V

(α)
1t + Γ(1+α)

2 V1rrρ
2 − r t

(1−α)

Γ(2−α)V1

)
= V1r

V2r

(
V

(α)
2t + Γ(1+α)

2 V2rrρ
2 − r t

(1−α)

Γ(2−α)V2

)
,

(16)
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with gathering together all V1 terms on the left-hand side and all V2 terms on the

right-hand side, we find(
V

(α)
1t + Γ(1+α)

2 V1rrρ
2 − r t

(1−α)

Γ(2−α)V1

)
V1r

=

(
V

(α)
2t + Γ(1+α)

2 V2rrρ
2 − r t

(1−α)

Γ(2−α)V2

)
V2r

.

(17)

Now both sides of (17) are independent of the maturity time, by assuming a(r, t)

as follows: (
V

(α)
t + Γ(1+α)

2 Vrrρ
2 − r t

(1−α)

Γ(2−α)V
)

(
∂V
∂r

) = a(r, t), (18)

according to [24]

a(r, t) = ρλ− µ, (19)

where λ is the market price of risk. So, we have the fractional zero-coupon bond

pricing equation

V
(α)
t +

Γ(1 + α)

2
ρ2Vrr − r

t1−α

Γ(2− α)
V + (µ− λρ)Vr = 0, (20)

where 0 < t < T .

In equation (20), we can use different interest rate models for µ and ρ, which lead

to different dynamics of instant interest rate. In this article we use the Vasicek mean-

reversion interest rate which is corresponding to µ(r, t) = ν(γ − r) and ρ(r, t) = ρ

in (1) [13]. Thus the fractional bond pricing model can be obtained as follows:

V
(α)
t +

Γ(1 + α)

2
ρ2Vrr − r

t(1−α)

Γ(2− α)
V + (ν(γ − r)− λρ)Vr = 0, (21)

where 0 < t < T . We need initial and boundary conditions to solve (21). According

to [26], we have
V (r, T ) = 1, 0 < r < R, t = T,
∂V (0,t)
∂t + µ(0)∂V (0,t)

∂r = 0, r = 0, 0 < t < T,
∂V (R,t)
∂t + µ(R)∂V (R,t)

∂r = RV, r = R, 0 < t < T.

(22)

Equation (21) with conditions of (22) can be solved by different methods. In

the next section, we solve this equation by the multiquadric-RBF approximation

method.

3 Numerical method

In this section, we first define the multi-quadric approximation method. Then,

equation (21) with conditions of (22) is solved.
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3.1 Multi-quadric approximation method

The MQ approximation method is a suitable method for numerical solution of the

initial and boundary value problem. Some advantages of this method are as follows:

• This method is very flexible because it does not depend on the positions of the

points and it can be used as an interpolation method for scattered points.

• It depends on the shape parameter, and we can obtain a convergence of high ac-

curacy for the pricing problem by setting this parameter and obtaining its different

values.

We assume that each function can be expanded as a finite series of upper hyper-

boloids, which is written as follows [23]:

V (p) =

N∑
j=1

bjφ(p− pj), (23)

where

φ(p− pj) = (∥p− pj∥2 + C2)
1
2 , j = 1, . . . , N, (24)

where ∥p − pj∥2 is the squared Euclidean distances in R and C is a non-zero pa-

rameter that is determined by the user. The value of this parameter affects the

shape; hence it is known as the shape parameter. The function φ is continuously

differentiable. The unknown coefficients {bj}Nj=1 will be determined by solving the

following linear equation:

V (pi) =

N∑
j=1

bjφ(pi − pj), i = 1, . . . , N. (25)

The shape parameter plays an important role in the multi–quadric approximation,

and it affects the accuracy and stability of the approximation. There are two kinds

of shape parameters: Constant shape parameter and variable shape parameter.

Many people use the constant shape parameter due to its simple analysis in

approximation [18, 19]. But multiple results of large set of applications show the

advantages of using variable shape parameter; for example, using of variable shape

parameter creates more distinct entries of discretization matrix, which reduces the

rounding error in calculations [20–22].

In this paper, we use the exponential shape parameter, which is given by Kansa

to get more accurate solutions in numerical results [21]:

φ(p− pj) = (∥p− pj∥2 + C2
j )

( 1
2 ), j = 1, . . . , N,

C2
j = C2

min

(
C2

max

C2
min

)( j−1
N−1 )

, j = 1, 2, . . . , N,

where Cmax and Cmin are the selected input parameters; so that the following ratio

is in the given range:
Cmax

Cmin
≃ 10 to 106.
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3.2 Discretization in time

The fractional derivative in (21) is a modified right Riemann–Liouville derivative

which is defined as follows:

∂αV (r, t)

∂tα
=

{
1

Γ(1−α)
d
dt

∫ T
t

V (r,ξ)−V (r,T )
(ξ−t)α dξ, 0 < α < 1,

∂V (r,t)
∂t , α = 1.

(26)

When α = 1, the model (21) becomes the classical bond pricing model.

Let t = T − τ ; for 0 < α < 1, we have

∂αV (r,t)
∂tα = 1

Γ(1−α)
d
dt

∫ T
t

V (r,ξ)−V (r,T )
(ξ−t)α dξ

= − 1
Γ(1−α)

d
dτ

∫ T
T−τ

V (r,ξ)−V (r,T )
(ξ−(T−τ))α dξ

= − 1
Γ(1−α)

d
dτ

∫ τ
0
V (r,T−η)−V (r,T )

(τ−η)α dη.

(27)

Then (21) can be rewritten as:

0D
α
τ U(r, τ) = Γ(1+α)

2 ρ2 ∂
2U(r,τ)
∂r2 − r (T−τ)(1−α)

Γ(2−α) U(r, τ)

+(ν(γ − r)− λρ)∂U(r,τ)
∂r ,

U(r, 0) = 1, 0 < r < R,
∂U(0,τ)
∂τ − µ(0)∂U(0,τ)

∂r = 0, r = 0, 0 < τ < T,
∂U(R,τ)
∂τ − µ(R)∂U(R,τ)

∂r = −RU(R, τ), r = R, 0 < τ < T,

(28)

where the fractional derivative is

0D
α
τ U(r, τ) =

1

Γ(1− α)
d

dτ

∫ τ

0

U(r, η)− U(r, 0)

(τ − η)α
dη, 0 < α < 1. (29)

For 0 < α ⩽ 1 and U(r, τ) ∈ C1, the modified Riemann–Liouville derivative is as

follows:

0D
α
τ U(r, τ) = 1

Γ(1−α)
d
dτ

∫ τ
0
U(r,η)−U(r,0)

(τ−η)α dη

= 1
Γ(1−α)

d
dτ

∫ τ
0

U(r,η)
(τ−η)α dη −

1
Γ(1−α)

d
dτ

∫ τ
0

U(r,0)
(t−η)α dη

= 1
Γ(1−α)

d
dτ

∫ τ
0

U(r,η)
(τ−η)α dη −

τ−α

Γ(1−α)U(r, 0)

= 1
Γ(1−α)

∫ τ
0
∂U(r,η)
∂η (τ − η)−αdη

= C
0 D

α
τ U(r, τ),

(30)

where C
0 D

α
τ U(r, τ) is a Caputo derivative [1]. In order that discretize the problem

for 0 < α < 1 in time direction, we substitute τn+1 into (30), then we have:

0D
α
τ U(r, τn+1) =

1

Γ(1− α)

∫ τn+1

0

∂U(r, η)

∂η
(τn+1 − η)−αdη, 0 < α ⩽ 1, (31)

where τn+1 = τn + δτ , τ0 = 0, n = 0, 1, . . . , N , δτN = T . Approximation of the

first order derivative in (31) by the following finite difference formula

∂U(r, τ)

∂τ
≃ U(r, τn+1)− U(r, τn)

∂τ
, τ ∈ (τn, τn+1). (32)
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By replacing equation (32) into (31), we obtain

∂αU(r,τn+1)
∂τα = 1

Γ(1−α)
∫ τn+1

0
∂U(r,η)
∂η (τn+1 − η)−αdη

= 1
Γ(1−α)

∑n
k=0

∫ τk+1

τk

∂U(r,η)
∂η (τn+1 − η)−αdη

= 1
Γ(1−α)

∑n
k=0

Uk+1−Uk

δτ

∫ τk+1

τk (τn+1 − η)−αdη,

(33)

where Uk = U(r, τk), k = 0, 1, . . . , N .

Then, the integral in the equation (33) is solved and we have

∂αUn+1

∂τα
= a0

(
Un+1 − Un +

n∑
k=1

bk(U
n−k+1 − Un−k)

)
, (34)

where a0 = δτ−α

Γ(2−α) , bk = (k + 1)1−α − (k)1−α and n = 0, 1, . . . , N .

By replacing equation (34) into equation (14), we obtain

a0
(
Un+1 − Un +

∑n
k=1 bk(U

n−k+1 − Un−k)
)

= Γ(1+α)
2 ρ2 ∂

2Un+1

∂r2 − r (T−(n+1)δτ)(1−α)

Γ(2−α) Un+1

+(ν(γ − r)− λρ)∂U
n+1

∂r ,

Un+1(r, 0) = 1, 0 < r < R,

Un+1(0, τ)− µ(0)δτUn+1
r (0, τ) = Un(0, τ), r = 0, 0 < τ < T,

Un+1(R, τ)− µ(R)δτUn+1
r (R, τ) +RδτUn+1(R, τ) = Un(R, τ),

r = R, 0 < τ < T.

(35)

Now, we solve (35) by the MQ approximation method. Therefore, it can be written

as follows:

For n = 0,

a0U
1 − Γ(1+α)

2 ρ2 ∂
2U1

∂r2 + r (T−δτ)(1−α)

Γ(2−α) U1 − (ν(γ − r)− λρ)∂U
1

∂r = a0U
0,

U1(r, 0) = 1, 0 < r < R,

U1(0, τ)− µ(0)δτU1(0, τ) = U0(0, τ), r = 0, 0 < τ < T,

U1(R, τ)− µ(R)δτU1(R, τ) +RδτU1(R, τ) = U0(R, τ),

r = R, 0 < τ < T.

(36)

For n ⩾ 1,

a0U
n+1 − Γ(1+α)

2 ρ2 ∂
2Un+1

∂r2 + r (T−(n+1)δτ)(1−α)

Γ(2−α) Un+1 − (ν(γ − r)− λρ)∂U
n+1

∂r

= a0U
n − a0

∑n
k=1 bk(U

n−k+1 − Un−k),
Un+1(r, 0) = 1, 0 < r < R,

Un+1(0, τ)− µ(0)δτUn+1
r (0, τ) = Un(0, τ), r = 0, 0 < τ < T,

Un+1(R, τ)− µ(R)δτUn+1
r (R, τ) +RδτUn+1(R, τ) = Un(R, τ),

r = R, 0 < τ < T.
(37)
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Now we approximate Un(r) by the equation (23) as follows:

Un(r) =

N∑
j=1

bnj φ(r − rj),

whrere b1, b2, . . ., bN are unknowns. Then we consider N collocation points to

obtain the values of bj , j = 1, . . . , N in the interpolant Un(r) as:

Un+1
i = Un+1(rj) ≃

N∑
j=1

bn+1
j φ(ri − rj).

By reconstruction of equation (25) in the matrix form, we obtain

[U ]n+1 = A[b]n+1, (38)

where [V ]n+1 = [V n+1
1 , V n+1

2 , . . . , V n+1
N ]T , [b]n+1 = [bn+1

1 , bn+1
2 , . . . , bn+1

N ]T , and A

is an N ×N matrix

A =



φ11 · · · φ1j · · · φ1N

...
. . .

...
...

...

φi1 · · · φij · · · φiN
...

...
...

. . .
...

φN1 · · · φNj · · · φNN


.

Now, by considering equations (36) and (37) in a matrix form, we obtain

[D]1 = B[b]1,

where

B =



G(φ11) · · · G(φ1j) · · · G(φ1N )
...

. . .
...

...
...

G(φi1) · · · G(φij) · · · G(φiN )
...

...
...

. . .
...

G(φN1) · · · G(φNj) · · · G(φNN )


,

G(∗) =


(1− µ(0)δτ d

dr )(∗), i = 1,

(a0 − Γ(1+α)
2 ρ2 d2

dr2 + r (T−δτ)1−α

Γ(2−α)

−(ν(γ − r)− λρ) ddr )(∗),
1 < i < N,

(1− µ(R)δτ d
dr +Rδτ)(∗), i = N,

and [D]1 = [D1
1, D

1
2, . . . , D

1
N ]T ,

D1
i =


U0
1 , i = 1,

a0U
0
i , 1 < i < N,

U0
N , i = N.
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Similarly, equation (37) can be written as:

[D]n+1 = B[b]n+1,

where

G(∗) =


(1− µ(0)δτ d

dr )(∗), i = 1,

(a0 − Γ(1+α)
2 ρ2 d2

dr2 + r (T−(n+1)δτ)1−α

Γ(2−α)

−(ν(γ − r)− λρ) ddr )(∗),
1 < i < N,

(1− µ(R)δτ d
dr +Rδτ)(∗), i = N,

and [D]n+1 = [Dn+1
1 , Dn+1

2 , . . . , Dn+1
N ]T ,

Dn+1
i =


Un1 , i = 1,

a0U
n
i − a0

∑n
k=1 bk(U

n−k+1
i − Un−ki ), 1 < i < N,

UnN , i = N.

4 The stability and convergence analysis

According to section (3.2), we discuss the unconditional stability and convergence

of equation (14). We consider the following equation:

∂αU

∂τα
= a0

(
n∑
k=0

bk(U
n−k+1 − Un−k)

)
+ ηn1 , (39)

according to [3], |ηn1 | ⩽ c(δτ)2 and
bk > 0, k = 0, 1, . . . , n,

1 = b0 > b1 > . . . > bn, bn → 0, n→∞,∑n
k=0(bk − bk+1) + bn+1 = (1− b1) +

∑n−1
k=1(bk − bk+1) + bn = 1.

(40)

Now, we can reconstruct (14) by (34),

a0U
n+1 − Γ(1+α)

2 ρ2 ∂
2Un+1

∂r2 + r (T−(n+1)δτ)1−α

Γ(2−α) Un+1 − (ν(γ − r)− λρ)∂U
n+1

∂r

= a0U
n − a0

∑n
k=1 bk(U

n−k+1 − Un−k),
(41)

the right-hand side of equation (41) can be rewritten as follows:

a0U
n − a0

∑n
k=1 bk(U

n−k+1 − Un−k)
= a0(b0U

n −
∑n
k=1 bk(U

n−k+1 − Un−k))
= a0(b0U

n −
∑n−1
k=0 bk+1U

n−k +
∑n
k=1 bkU

n−k).

(42)

We have

(u, v) =

∫
Ω

(uv)dx,
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and ∥v∥ = (v, v)
1
2 in L2.

By the inner product of equation (41) in v, we obtain

a0(U
n+1, v)− Γ(1+α)

2 ρ2(∂U
n+1

∂r , ∂v∂r )

+r (T−(n+1)δτ)1−α

Γ(2−α) (Un+1, v)− (ν(γ − r)− λρ)(Un+1, ∂v∂r )

= a0(b0(U
n, v)−

∑n−1
k=0 bk+1(U

n−k, v)

+
∑n
k=1 bk(U

n−k, v)).

(43)

Theorem 4.1. The semidiscrete equation (41) is an unconditional stable for δτ > 0

and

∥Un+1∥ ⩽ ∥U0∥, n = 0, 1, . . . , N − 1.

Proof. Consider equation (43), and let n = 0; then

a0(U
1, v)− Γ(1+α)

2 ρ2(∂U
1

∂r ,
∂v
∂r )

+r (T−δτ)1−α

Γ(2−α) (U1, v)− (ν(γ − r)− λρ)(U1, ∂v∂r )

= a0b0(U
0, v),

(44)

by substituting v = U1 in (44) and by using Schwartz inequality, we obtain

∥U1∥2 ⩽ ∥U1∥∥U0∥ ⇒ ∥U1∥ ⩽ ∥U0∥.

Now, suppose

∥U j∥ ⩽ ∥U0∥, j = 1, 2, . . . , n; (45)

we want to prove ∥Un+1∥ ⩽ ∥U0∥. Replacing v = Un+1 in (43), implies

a0(U
n+1, Un+1)− Γ(1+α)

2 ρ2(∂U
n+1

∂r , ∂U
n+1

∂r )

+r (T−(n+1)δτ)1−α

Γ(2−α) (Un+1, Un+1)− (ν(γ − r)− λρ)(Un+1, ∂U
n+1

∂r )

= a0(b0(U
n, Un+1)−

∑n−1
k=0 bk+1(U

n−k, Un+1)

+
∑n
k=1 bk(U

n−k, Un+1)).

(46)

The right-hand side of equation (46) can be rewritten as follows:

a0(b0(U
n, Un+1)−

∑n−1
k=0 bk+1(U

n−k, Un+1) +
∑n
k=1 bk(U

n−k, Un+1))

= a0((1− b1)(Un, Un+1)−
∑n−1
k=1 bk+1(U

n−k, Un+1)

+
∑n
k=1 bk(U

n−k, Un+1))

= a0((1− b1)(Un, Un+1) +
∑n−1
k=1(bk − bk+1)(U

n−k, Un+1)

+bn(U
0, Un+1)).

(47)

By using the Schwartzs inequality, we have

∥Un+1∥2 ⩽ (1− b1)∥Un∥∥Un+1∥+
n−1∑
k=1

(bk− bk+1)∥Un−k∥∥Un+1∥+ bn∥U0∥∥Un+1∥;

(48)
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therefore, equation (48) leads to

∥Un+1∥ ⩽ (1− b1)∥Un∥+
n−1∑
k=1

(bk − bk+1)∥Un−k∥+ bn∥U0∥. (49)

According to equation (45),

∥Un+1∥ ⩽ (1− b1)∥U0∥+
n−1∑
k=1

(bk − bk+1)∥U0∥+ bn∥U0∥, (50)

by considering equation (40), we obtain

∥Un+1∥ ⩽ ((1− b1) +
n−1∑
k=1

(bk − bk+1) + bn)∥U0∥ ⩽ ∥U0∥.

Theorem 4.2. Let (U(r, tn))Nn=0 be the exact solution of (14), and let (Un)Nn=0 be

the discrete time solution of (14) with initial U(r, 0) = 1; then we have the following

error estimates,

∥U(r, tn)− Un∥ ⩽ c

1− α
Tα(δτ)2−α, 0 < α < 1. (51)

Proof. By replacing equation (39) into (14)

a0((U(r, tn+1), v))− Γ(1+α)
2 ρ2(∂U(r,tn+1)

∂r , ∂v∂r )

+r (T−(n+1)δτ)1−α

Γ(2−α) (U(r, tn+1), v)− (ν(γ − r)− λρ)(U(r, tn+1), ∂v∂r )

= a0

(
b0(U(r, tn), v)−

∑n−1
k=0 bk+1(U(r, tn−k), v)

+
∑n
k=1 bk(U(r, tn−k), v)

)
+ (ηn+1

1 , v).

(52)

By subtracting equation (52) from equation (43), we define en+1 = U(r, tn+1) −
Un+1; we have

a0(e
n+1, v)− Γ(1+α)

2 ρ2(∂e
n+1

∂r , ∂v∂r )

+r (T−(n+1)δτ)1−α

Γ(2−α) (en+1, v)− (ν(γ − r)− λρ)(en+1, ∂v∂r )

= a0

(
(1− b1)(en, v) +

∑n−1
k=1(bk − bk+1)(e

n−k, v)

+bn(e
0, v)

)
+ (ηn+1

1 , v).

(53)

By substituting v = en+1 into equation (53), we obtain

a0(e
n+1, en+1)− Γ(1+α)

2 ρ2(∂e
n+1

∂r , ∂e
n+1

∂r )

+r (T−(n+1)δτ)1−α

Γ(2−α) (en+1, en+1)− (ν(γ − r)− λρ)(en+1, ∂e
n+1

∂r )

= a0

(
(1− b1)(en, en+1) +

∑n−1
k=1(bk − bk+1)(e

n−k, en+1)

+bn(e
0, en+1)

)
+ (ηn+1

1 , en+1),

(54)
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and for n = 0, we have

a0(e
1, e1)− Γ(1+α)

2 ρ2(∂e
1

∂r ,
∂e1

∂r )

+r (T−(n+1)δτ)1−α

Γ(2−α) (e1, e1)− (ν(γ − r)− λρ)(e1, ∂e
1

∂r )

= a0((1− b1)(e0, e1)) + (η11 , e
1).

(55)

The Schwartz inequality gives

∥e1∥2 ⩽ ∥e1∥∥e0∥+ ∥η11∥∥e1∥; (56)

according to (40) and |ηn1 | ⩽ c(δτ)2,

∥e1∥ ⩽ cb−1
0 (δτ)2.

Now, we suppose that inequality en ⩽ cb−1
n−1(δτ)

2 holds for n; we want to prove

∥en+1∥ ⩽ cb−1
n (δτ)2.

By using the Schwartz inequality in equation (54), we have

∥en+1∥2 ⩽ (1−b1)∥en∥∥en+1∥+
n−1∑
k=1

(bk−bk+1)∥en−k∥∥en+1∥+∥ηn+1
1 ∥∥en+1∥, (57)

∥en+1∥ ⩽ c(δτ)2((1− b1)b−1
n−1 +

n−1∑
k=1

(bk − bk+1)b
−1
n−k−1) + c(δτ)2, (58)

by applying the induction assumption and bk
bk+1

< 1, we obtain

∥en+1∥ ⩽ c(δτ)2b−1
n

(
(1− b1) +

∑n−1
k=1(bk − bk+1)

)
+ c(δτ)2

= c(δτ)2b−1
n

(
(1− b1) +

∑n−1
k=1(bk − bk+1)

)
+ cbnb

−1
n (δτ)2

=
((

(1− b1) +
∑n−1
k=1(bk − bk+1)

)
+ bn

)
cb−1
n (δτ)2

⩽ cb−1
n (δτ)2.

(59)

Therefore, the estimation is proved. By using the definition of bk, we have

n−αb−1
n−1 ⩽ 1

1− α
;

consequently, we have

∥U(r, tn)− Un∥ ⩽ cb−1
n−1(δτ)

2 ⩽ cb−1
n−1n

−αnα(δτ)2

⩽ c
1−α (nδτ)

α(δτ)2(δτ)−α ⩽ c
1−αT

α(δτ)2−α,

for all n, such that nδτ ⩽ T .
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Figure 1: Numerical solution of fractional bond pricing of 5, 7, and 10 years and
α=1.

5 Numerical result

In this section, we investigate the efficiency of the presented method. The method

is implemented for solving some examples with different parameters.

Example 5.1. Consider equation (21) with the following parameters [27]:

ρ = 0.0126, ν = 0.025, γ = 0.15339, Cmax = 50, Cmin = 1.9.

Figure 1 shows the numerical solution, which is obtained by the multiquadric ap-

proximation method for the value of 2, 3, and 5 years bonds based on the Vasicek

model. It depicts the interest rate from 0 to 1 and the price of bond limits to 0.

Example 5.2. In this example, we consider the actual data of the treasury Bills of

the central bank of the Islamic republic of Iran in 2016 and 2017. By using actual

data, the parameters of equation (21) are estimated as follows:

ρ = 0.0299, ν = 1.2859, γ = 0.2009.

Now we plot the treasury Bills figure by considering the other variables and param-

eters and by using the numerical method for α = 1, 0.75, 0.5 at t = 1 as follows:

rmax = R = 0.25, rmin = 0.18, T = 2,

Cmax = 50, Cmin = 1.9.
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Figure 2: Numerical solution of the bond pricing at t = 1.

According to the figure 2, we can find that the price of bonds using the numerical

method for different α is limited to the price of the classical bonds. It indicates

that the numerical method is efficient.

6 Conclusion and recommendation

The main focus of this paper was to model fractional bond price and to solve it

based on the MQ method. In order to reach this goal, first we modelled the bond

pricing under vasicek short interest rate model, then we solved this equation by

MQ method in which the shape parameter was variable.

The numerical result emphasizes that when the interest rate raises, the price of

the bond reduces. Also, by increasing the maturity time of the bonds, the possibility

of fluctuating in prices will be higher, due to the interest rate.
Finally, for future research, we suggest to add the jump term to our recommended

model to obtain a new model. Also, we can use other interest rate models in this
equation and compare the behavior of the models. Other numerical methods can
be used for this recommended model.

Bibliography
[1] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, frac-

tional differential equations, to methods of their solution and some of their applications, Math-
ematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.

[2] V. R. Hosseini, W. Chen, and Z. Avazzadeh, Numerical solution of fractional telegraph equa-
tion by using radial basis functions, Eng. Anal. Bound. Elem, 38 (2014) 31–39.

[3] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion
equation, J. Comput. Phys, 225(2) (2007) 1533–1552.

[4] C. Li, Z. Zhao and, Y. Q. Chen, Numerical approximation of nonlinear fractional differential
equations with subdiffusion and superdiffusion, Comput. Math. Appl, 62(3) (2011) 855–875.

[5] X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation,
SIAM J. Numer. Anal, 47(3) (2009) 2108–2131.

[6] F. Liu, P. Zhuang, V. Anh, and I. Turner, A fractional-order implicit difference approximation
for the space–time fractional diffusion equation, ANZIAM J, 47 (C) (2005) C48–C68.



122 Journal of Mathematics and Modeling in Finance

[7] W. Wyss, The fractional Black-Scholes equation, Fract. Calc. Appl. Anal, 3(1) (2000) 51–62.

[8] G. Jumarie, Derivation and solutions of some fractional Black–Scholes equations in coarse-
grained space and time, Application to Merton’s optimal portfolio. Comput. Math. Appl, 59(3)
(2010) 1142–1164.

[9] B. Osu and A. Chukwunezu, On the solution to a fractional Black–Scholes equation for the
price of an option, Int. J. Math. Anal. Appl, 1(3) (2014) 38–42.

[10] M. A. M. Ghandehari and M. Ranjbar, European option pricing of fractional Black–Scholes
model with new Lagrange multipliers, Comput. Methods Differ. Equ, 2(1) (2014) 1–10.

[11] L. Song and W. Wang, Solution of the fractional Black–Scholes option pricing model by
finite difference method. Abstr. Appl. Anal, Hindawi Publishing Corporation, (2013).
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