[1] R. Mertonr, Continuous-Time Finance, 1st ed.; Blackwell: Oxford, UK, (1990).
[2] E. Eberlein, F.E. Benth, V.A. Kholodnyi, P. Laurence, Fourier-Based Valuation Methods in Mathematical Finance. In Quantitative Energy Finance, Eds.; Springer: Berlin/Heidelberg, Germany, (2014) pp. 85-114.
[3] R.A. Alijedhi, A. Kilicman, Fractional partial differential equations associated with Levy stable process, Mathematics, (2020) 8, 508; doi:10.3390/math8040508.
[4] W. Chen, X. Xu, S.P. Zhu, Analytical pricing European-style option under the modi ed Black-Scholes equation with a partial fractional derivative, Quartely Appl. Math (2014) 72: 597-611.
[5] R.A. Alijedhi, A. Kilicman, Financial Applications on Fractional Levy Stochastic Processes, Fractal and Fractional, (2022) 2022, 6, 278. https://doi.org/10.3390/fractalfract6050278.
[6] S.L.Wang, Y.F. Yang, Y.H. Zeng, The Adjoint Method for the Inverse Problem of Option Pricing, Mathematical Problems in Engineering, (2014) http://dx.doi.org/10.1155/2014/314104.
[7] H. Egger, H.W. Engl, Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates, Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, (2004)
[8] I. Bouchouev, V. Isakov, Uniqueness, stability and numerical methods for the inverse problem that arises in nancial markets, Inverse Problems, (1999) 15:R95-116.
[9] T. Hein, B. Hofmann, On the nature of ill-posedness of an inverse problem in option pricing, Inverse Problems, (2003) 19:1319-1338.
[10] Y. Jin, J. Wang, S. Kim, Y. Heo, C. Yoo, Y. Kim, J. KIm and D. Jeong, Reconstruction of the Time-Dependent Volatility Function Using the BlackScholes Model, Discrete Dynamics in Nature and Society, (2018).
[11] S. Singh, V. Patel, V. Singh, Application of wavelet collocation method for hyperbolic partial differential equations via matrices, Applied Mathematics and Computation, (2018) 320: 407-424.
[12] S. Shen, F. Liu, J. Chen, I. Turner, V. Anh, Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput. (2012) 218: 1086110870.
[13] M.N. Ozisik, H. R. B. Orlande, Inverse Heat Transfer, Fundamentals and Applications, NewYork: Taylor Franscis, 2000.