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Abstract:
Abstract:
In this paper, we design a pure-endowment insurance contract and obtain the
optimal strategy and consumption for a policyholder with CRRA utility function.
In this contract, premiums are received from the policyholder at certain times. The
insurer undertakes to pay the premiums by a certain guarantee rate, in addition,
by investing in a portfolio of risky and risk free assets share invest profits. We
used Variance Gamma process as a representative of infinite activity jump models
and sensitivity of jump parameters in an uncertainty financial market has been
studied. Also we compared results using by two forces of mortality.
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1 Introduction

There are a variety of products in the life insurance literature. These products

differ in how the benefits are paid and maturity time. These products include

term insurance, pure endowment and endowment. In this paper, we design a pure

endowment contract by stochastic approach. A pure endowment is a type of life

insurance policy in which an insurance company agrees to pay the insured a certain

amount of money if the insured is still alive at the end of specified time period. In

our designed contract, premiums are received from the policyholder at certain times.

The insurer undertakes to pay the premiums by a certain guarantee rate, in addition,

by investing in a portfolio of risky and risk free assets, share invest profits.

In this paper, we focus on the investment (in a finite timetable) for a person

who buys this policy. In general, we consider a portfolio of risky and risk free

asset and find an optimal strategy and consumption for this portfolio. Optimal

allocation of capital among a set of financial assets under conditions of uncertainty
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and risk is a well-established research field in modern finance theory. In this aspect

and before Merton [28] contribution to the field, most portfolio selection models

have only considered one-period, static models based on Markowitz’s mean vari-

ance [27] modern portfolio theory. Merton in [28] and [29], studied ”the combined

problem of optimal portfolio selection and consumption rules for an individual in a

continuous-time model”. As a particular case, he examined in detail the two-asset

model (a risk free asset and a risky one) with constant relative risk-aversion or

iso-elastic marginal utility. Yaari [38], consider a life insurance problem with un-

certain lifetime. In this respect, Richard [32] was combined two above approaches

that used sophisticated methods at an early date for the analysis of a life-cycle life

insurance and consumption-investment problem in a continuous time model. In

general, our contract is similar to an equity-linked life insurance. Typically, the

policyholder pays either a single premium or a stream of periodic premiums dur-

ing an accumulation phase. In return, the insurer guarantees a stream of periodic

payments starting either immediately or at a future date. Barigou and Delong [3]

defined equity-linked life insurance contracts and priced with multiple risk factors

by neural networks. Ceci et al. [8] considered hedging problem of a unit-linked life

insurance. They used an endowment insurance contract whose final value depends

on the trend of a stock market where the premia the policyholder pays are invested.

Kirkby and Nguyen [18] desined an equity-linked Guaranteed Minimum Death Ben-

efit (GMDB) whose payoff depends on a dollar cost averaging (DCA) style periodic

investment in the risky index, with rider premiums paid at regular intervals and

derived closed-form valuation formulas under the fairly broad class of exponential

Lévy models for the risky index, which includes Black-Scholes as a special case. In

this paper, we used the jump-diffusion models for simulating stock price. Wang et

al. [34] Priced an equity-linked death benefits contract by complex Fourier series

method under regime-switching jump-diffusion models. Bosserhoff and Stadje [5]

defined an optimal strategy problem with unit-link life insurance contract under

mean-variance portfolio selection of an insurer and allowed for the incorporation of

basis (mortality) risk. Wang et al. [35] studied the hedging problem of unit-linked

life insurance contracts in an incomplete market presence of self-exciting effect,

which is described by a Hawkes process. They demonstrated that jump clustering

has a significant impact on the optimal hedging strategies. Huertas [16] using by

fractional models, derived mathematical reserves of unit-linked insurance policies.

Mathematical reserves are specified amounts of capital that an insurance company

is legally obligated to allot to cover its expected claims in a given period.

The main results of this paper is about investing of the received premiums in fi-

nancial markets. Following Kung and Yang [21], we consider an optimal investment

strategy and consumption for a policyholder who has purchased a pure endowment

contract. In this literature, Li et al. [23] calculated the optimal insurance and rein-

surance problems for an insurer with risk process under the heston model. Simular

to them, we used jump-diffusion processes for modeling risky assets. Liang and
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Lu [24] used short-noice process to model stock price in the equity-linked life in-

surance. Another applications of optimal control (strategy and consumption) is in

defining to pension fund whether Defined Contribution (DC) or Defined Benefit

(DB). This topic still receive a considerable attention from authors. For instance,

Xu and Gao [36] provided a closed-form solution for the optimal portfolio control

problem of a DC pension. Dong and Zheng [14] applied the concavification and

dual control method to solve an optimal investment problem for a DC pension

fund. Yao et al. [37] considered the stochastic inflation rate which described by a

discrete-time of the Ornstein-Uhlenbeck process to derive an analytical expression

for the efficient investment strategy for a DC pension fund. Dong and Zheng [13]

for a DC pension fund whose its manager is a loss averse person derived an opti-

mal investment strategy in terms of the dual controlled process and the dual value

function.

In recent work of pure endowment contract can be found in ceci et al. [7] when

the insurance company has a limited information on the mortality intensity of the

policyholder. They priced the pure endowment contract via BSDEs under partial

information. And in last paper, Baños et al. [4] considered an unit-linked insurance

policy and evaluated variance and interest rate risk in the insurance markets.

The rest of this article is organized as follows. Section 2 collects some elements

that play vital roles in the rest of this article. Using the stochastic optimal control

method, Section 3 calculates the optimal investment strategy for an asset which its

stock dynamic has a jump process. In Section 4, the numerical implementation of

the results have been given.

2 Preliminaries

In the paper we design a pure endowment contract by stochastic approach. A pure

endowment is a type of life insurance policy in which an insurance company agrees

to pay the insured a certain amount of money if the insured is still alive at the

end of a specific time period. In our designed contract, the premiums P (t) are

received from the policyholder at certain times. The insurer undertakes to pay

the premiums by guarantee rate g, in addition, by investing in a portfolio of risky

and risk free assets, share invest profits with rate τ . We assume that in maturity

time T , the policyholder is alive. It should be noted that the two guarantee and

participation rates are updated at the beginning of each year. In this contract, we

create an account for the policyholder in which we put the return of investment.

We name this account C+
t and defined:

C+
t =

 P t = 0

(1 + g)Ct−1 + τ
[
Wπ∗,c∗

t − (1 + g)Ct−1

]+
t = 1, ..., T
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Where [A]
+

= max [A, 0] and Wπ∗,c∗

t is the wealth account under optimal strat-

egy and consumption (π∗,c∗ respectively) that we will introduce in the following.

Another account designed for the policyholder is the reserve account, which we

indicate with R+
t , and is a cover for the policyholder’s account when the market is

in a bad situation. In other words, we can write

R+
t =

 0 t = 0

W
π∗
t

t − (1 + g)Ct−1 − τ
[
Wπ∗,c∗

t − (1 + g)Ct−1

]+
t = 1, ..., T

We remind that in pure endowment contracts, only in the insured account at the

end of the contract is considered. Hence we write the policyholder’s account at the

maturity:

CT = (1 + g)TC0 + τ

T∑
t=1

[
Wπ∗,c∗

t − (1 + g)Ct−1

]+
(1 + g)

T−t
. (1)

Next, with the premiums received from the policyholder, we create an investment

portfolio of risky and risk free assets. We start the model’s description by assuming

that an expected utility maximizing, risk-averse economic agent makes investment

decisions in a continuous-time setting in a finite time horizon [0, T ] in a market

modeled by a complete filtered probability space (Ω,F , {Ft}t∈[0,T ],P). All the pro-

cesses in the paper are adapted to the filtration {Ft}t∈[0,T ] which describes the flow

of information in the given time period. Let us assume that the market composes

of two underling securities: (1) A safe and risk free asset (e.g. a bond or a bank

account) described by
dB(t)

B(t)
= r(t)dt, B(0) = 1, (2)

for a locally deterministic interest rate process r(t) and (2) A risky asset (e.g. a

stock) specified by the stochastic dynamics for its return as

dS(t)

S(t)
=
(
µ(t)+

1

2
σ(t)

2
)
dt+σ(t)dZ(t)+

∫ ∞

−∞
(ex − 1)N(dt, dx), S(0) = S0, (3)

where µ(t) and σ(t) are two adapted processes, respectively, representing the drift

and diffusion parts of the rate of return and Z(t) is a standard Brownian motion

and N(·, ·) is a Poisson random counting measure with the compensator Π(·, ·)
both defined on R+ ×R. Moreover, we assume that the compensator Π(·, ·) for any
measurable random function Φ(t, x) := Φ(ω, t, x) satisfies

E

∫
R

Φ(t, x)N(dt, dx)

 =

∫
R

Φ(t, x)Π(t, dx)dt. (4)

Hereafter now, we assume that the jump part and the Brownian part in the stock

dynamic are independent. Note that the measure Π(t, dx) specifies the intensity of
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the aggregate jump arrival rate and for practical purposes, we could assume it to

depend on a deterministic/stochastic state variable νt via Π(t, dx) = Π(νt, dx).

We may think of this state variable as representing the current level of the market

or business activity (e.g. trading volume or liquidity) or some other related micro-

level indicator and assume that it follows a stochastic differential equation of the

form

dνt = m(νt, t)dt+ σ(νt, t)dZ
ν
t .

Where m(νt, t), σ(νt, t) are the drift and diffusion parts of the state variable νt and

Zνt is a standard Brownian motion. In such a situation, we will assume that the

drift µ, the diffusion σ and the interest rate r are all deterministic functions of time

and the state variable. We should note that: in the special case that the jump

arrival rate is proportional to the state according to

Π(νt, dx) = νtΠ(dx). (5)

Financial models with jumps can be decomposed as the jump-diffusion models

and models with infinite number of jumps in every interval, say infinite activity mod-

els. The regular price for the jump-diffusion models can be obtained by a diffusion

process, which its jumps punctuated at random intervals. Such the jumps repre-

sent rare events-crashes and large drawdown. See Merton [29] and the Kou [19] for

some examples on such approach. For the infinite activity models, since dynamics

of jumps is already rich enough to generate nontrivial small-time behavior, one does

not need to introduce a Brownian component. Moreover, Madan [26] among other

authors, has been argued that such infinite activity models give a more realistic

description of the price process at various time scales. It’s worthwhile mentioning

that, many models from this class can be constructed via a Brownian subordina-

tion, which gives them additional analytical tractability compared to jump-diffusion

models. In this article, we consider a class of the infinite activity models.

(Variance-Gamma Model: Infinite Activity Case) The Variance-Gamma

model could be considered as an extension of the Brownian motion process with

drift which is obtained by a random time change specified by a gamma process as:

Xt = θτt + ρZ(τt),

where θ and ρ are some given constants and for fixed l > 0, and ν > 0, the gamma

process τt = γt(l, ν) has mean rate lν and variance rate l2ν. We also note in passing

that the last (integral) term in (3) indicates the presence of jumps in stock price

dynamics, first considered by Merton [30], where he assumed that the stock follows

a jump-diffusion process with a Poisson (slow) arrival rate (see also Liu et al. [23] for

a recent study about implications of jumps in pricing and volatility on investment

strategies). However, we consider here the more realistic choice of Lévy processes

with extremely fast (potentially infinite) jump rates. The specific example in our

mind is the Variance-Gamma (VG) process which is a pure jump Lévy process with
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an infinite arrival rate of small jumps, first introduced to the literature by Madan

and Seneta [25].

In the VG model, the Lévy compensator measure could be represented as

Π(dx) =
1

x
e−

x
λu I{x>0} −

1

x
e

x
λd I{x<0},

where λu and λd are the posetive solutions from λu − λu = θl and λuλu = 1
2ρ

2l.

That is λu = 1
2

(√
θ2l2 + 2ρ2l + θl

)
and λd =

1
2

(√
θ2l2 + 2ρ2l − θl

)
.

We know that the VG process is a pure jump Lévy process. In other words the

volatility in the stock dynamic is zero (σ = 0). For some (deterministic) measure

Π(·), we will be able to simplify many of the presented results in the paper.

Suppose {W (t)}t∈[0,T ] denotes the wealth process of the investor representing

the total accumulated wealth at time t. We need the following definitions before

any further progress.

Definition 2.1. (i) A portfolio process (or portfolio strategy) is a real-valued

progressively measurable process {π(t)}t∈[0,T ] with∫ T

0

|π(t)W (t)|2dt <∞, P− a.s.

(ii) A consumption process is a non-negative real-valued progressively measur-

able process {c(t)}t∈[0,T ] with∫ T

0

c(t)dt <∞, P− a.s.

The cumulative consumption up to time t will be denoted by C(t) and is

defined by

C(t) =

∫ t

0

c(u)du.

In the sequel, we assume that the investor maintains a self-financing portfolio

by allocating his/her wealth among the two underlying assets in such a way that

any wealth change is only due to consumption or gains/losses from investment in

the bond and the stock. In this respect, We are following Iscanoglu-Cekic [17] to

define the wealth processWπ,c := {Wπ,c(t)}t∈[0,T ] corresponding to a self-financing

portfolio/consumption strategy (π, c) will be the (unique) solution of the stochastic

differential equation

dWπ,c(t) = ((r(t) + π(t)(µ(t) +
1

2
σ(t)2 − r(t)))Wπ,c(t)− c(t))dt (6)

+P (t)dt+ π(t)Wπ,c(t)σ(t)dZ(t) + π(t−)Wπ,c(t−)

∫ ∞

−∞
(ex − 1)N(dt, dx),

Where Wπ,c(0) = P (0).

A self-financing strategy (π, c) is said to be admissible if Wπ,c(t) ≥ 0, P − a.s.,

for all t ≥ 0. The set of all admissible strategies will be denoted by A.
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Definition 2.2. CRRA utility function In this definition, we introduce two

popular utility functions and calculate optimal policy for their. One of the most

important utility functions is CRRA, so that, these utility functions have two utility

function in their self and the following is displayed:

U(x) =


x1−γ

1−γ γ ̸= 1, γ > 0,

log(x) γ = 1,

(7)

in which U(x) = x1−γ

1−γ and U(x) = log(x) are power and logarithm utility, respec-

tively.

In the following, we will design a pure endowment insurance product that is

connected to investing in stock markets. As mentioned earlier, in pure endowment

product, the condition of the policyholder surviving at the end of the contract is

one of the main conditions for the execution of the contract. Hence, we consider

the probability distribution for the survival of the policyholder. The function F̄ (t),

which is called the survivor function, is defined to be the probability that the

lifetime is greater than or equal to t,

F̄ (t) = P (τ ≥ t) = 1− F (t)

The hazard function represents the instantaneous death rate for the policyholder

who has survived to time t, and it is defined by:

λ(t) = lim
δt→0

P (t ≤ τ < t+ δt |τ ≥ t )

δt
=
f(t)

F̄ (t)
,

From this it follows that

λ(t) = − d

dt
ln(F̄ (t)),

in which case the survivor function is given by:

F̄ (t) = exp

{
−
∫ t

0

λ(u)du

}
,

and the probability density function is related to the hazard rate by:

f(t) = λ(t) exp

{
−
∫ t

0

λ(u)du

}
.

We now introduce some additional notation associated with the random variable τ .

Denote by f(s, t) the conditional probability density for death at time s conditional

upon the policyholder being alive at time t ≤ s, so that

f(s, t) =
f(s)

F̄ (t)
= λ(s) exp

{
−
∫ s

t

λ(u)du

}
,
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And denote by F (s, t) the conditional probability for the policuholder being alive

at time s conditional upon being alive at time t ≤ s, so that

F (s, t) =
F̄ (s)

F̄ (t)
= exp

{
−
∫ s

t

λ(u)du

}
.

3 Creating an Investment Portfolio for the Policy-
holder

In this section, we are creating a portfolio of assets for a policyholder and finding

an optimal strategy and consumption with two utility functions. Following Mer-

ton [28] and to formulate the problem of choosing optimal portfolio selection and

consumption rules (π∗ and c∗, respectively),

J(W, t) = sup
{π(s),c(s)}0≤s≤t

Et

(
F̄ (T, t)

(
U(Wπ,c(T )) +

∫ T

t

U(s, c(s))ds

))
, (8)

in which Et denotes the conditional expectation operator relative to σ-algebra Ft
and U(.) and U(t, .) are some (generalized) utility functions and F̄ (T, t) is survival

distribution function.

In order to derive the optimality equations, we employ the dynamic programming

principle and stochastic optimal control theory leading us to the following nonlinear

Hamilton-Jacobi-Bellman (HJB) partial differential equation

Ω(W,π, c, t) = Jt − λ(t)J + sup
{π(t),c(t)}

{(r + π(µ+
1

2
σ2 − r))WtJW (9)

−cJW + U(t, c) +
1

2
π2σ2W 2

t JWW

+

∫ ∞

−∞

[
J
(
W (1 + π(ex − 1)), t

)
− J(W, t)

]
Π(νt, dx)

}
= 0,

where JW and Jt denote the first partial derivatives of J(W, t) w.r.t. W and t,

and similarly for higher derivatives. A candidate for the optimal strategy and

consumption (π∗, c∗) is obtained by taking partial derivatives of Ω(W,π, c, t) with

respect to πt and ct, and equate to 0 (the first-order condition, say FOC, for Ω):

(µ+ 1
2σ

2 − r)WtJW + π∗σ2W 2
t JWW +

∫ ∞

−∞

∂

∂π
J(W (1 + π∗(ex − 1)), t)Π(νt, dx) = 0.

(10)

and
∂

∂c
U(t, c∗)− JW = 0 (11)

Thereafter, we can calculate the optimal strategy and cunsumption for power utility

function cases. A general form of power utility function when the time is finite

horizon, as derive by:



Paper 3: Design of a Pure Endowment Life Insurance Contract 45

U(Wt) = e−αT
Wt

1−γ

1− γ
, U(t, c) = e−αt

c1−γ

1− γ
, (12)

Theorem 3.1. Consider the following assumptions: Assume that the coefficients

µ, σ and r in (2) and (3) are driven by a constant state νt ≡ ν, i.e.

• Following by Aı̈t-Sahalia et al. [1], we guess the value function in the following

form:

J(Wt, t) = U(Wt)f
γ(t), (13)

in which f(t) is the deterministic function:

f(t) =

(∫ t

0

e−
(α+Ψ(π∗))(T−s)

γ + 1
γ

∫ s
0
λ(u)duds

)
e

1
γ (
∫ t
0
λ(s)ds−Ψ(π∗)(T−t)) (14)

in which
Ψ(π∗) = (1− γ)

((
r + π∗ (µ+ 1

2σ
2 − r

))
− γπ∗2σ2

2

)
+Φ(π∗)

Φ(π∗) =

∫ ∞

−∞

(
(1 + π∗(ex − 1))

1−γ − 1
)
Π(νt, dx)

With boundary condition f(T ) = 1.

• Also assume that there is deterministic function π∗ that solves the following

equations:

−γσ2π∗+(µ+
1

2
σ2−r)+

∫ ∞

−∞
(1 + π∗(ex − 1))

−γ
(ex−1)Π(νt, dx) = 0. (15)

• and the optimal cunsumption solves the following equations:

c∗(t) = e
α(T−t)

γ
Wt

f(t)
. (16)

Proof. We use FOC condition from HJB equation to compute strategy policy (π∗

and c∗). In this case utility function introduce in (12) and J as following by:

J(Wt, t) = e−αT
Wt

1−γ

1− γ
fγ(t),

and 

JW = e−αT fγ(t)Wt
−γ

JWW = −γe−αT fγ(t)Wt
−γ−1

Jt = γe−αT Wt
1−γ

1−γ fγ−1(t)f ′(t)

U(t, c∗t ) =
eα(T−t)e

α(T−t)(1−γ)
γ

f(t) . e
−αTWt

1−γ

1−γ fγ(t)

(17)
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by substituting (17) in HJB equation and factoring of e
−αTWt

1−γ

1−γ fγ(t), we have:

f ′(t)− (λ(t)−Ψ(π∗))

γ
f(t) + e

α(T−t)
γ = 0

Finally, by solving this ODE and applying the boundary condition f(T ) = 1, f(t)

will be achieved.

Remark 3.2. Due to above theorem, the age of policyholder and the mortality rate

are only effective in calculating the optimal consumption but not in the optimal

strategy.

The following lemma provides the optimal strategy under Variance Gamma

model.

Lemma 3.3. Under the Variance Gamma model the optimal strategy π∗ given by

Theorem (3.1) is, respectively, solution of the following equations

0 = [(µ− r) +M(π∗)

where

M(π∗) =

∫ 1

0

(1− π∗t)−γ

 t(1− t)
1
λd

ln(1− t)

 −
(
1− t(1− π∗)

1− t

)−γ
 −t(1− t)

1
λu

(1− t) ln(1− t)

 dt

1− t
.

Proof. To compute the integral part of Equation (15), one may separate such inte-

gral into two parts and used the Variance Gamma measure (with σ = 0)

M(π∗) =−
∫ 0

−∞
(1 + π∗(ex − 1))

−γ
(ex − 1)

1

x
e

x
λd dx

+

∫ ∞

0

(1 + π∗(ex − 1))
−γ

(ex − 1)
1

x
e−

x
λu dx.

In the next step, we change variable for positive part of integral to x = − ln(1− t)

and for negative part of integral to x = ln(1− t) and get the desired result.

Following by the Gaussian integration method, we can numerically solve the

optimal strategy which reported in the numerical section.

Example.1 In this example, we use De Moivre Force of mortality with maximum

age ω for computing optimal consumption in power utility case

λ(t) =
1

ω − x− t
, 0 < t < ω

and

c∗(t) = e
α(T−t)

γ
Wt

f(t)
.



Paper 3: Design of a Pure Endowment Life Insurance Contract 47

where

f(t) = ξ−(γ+1)
(

2(ω−x)
ω−x−t

) 1
γ

exp
(
ξ(ω − x− T )− ψ(π∗)

γ (T − t)
)

× (Γ (γ + 1, ξ(ω − x− t))− Γ (γ + 1, ξ(ω − x)))

(18)

where Γ is the lower incomplete gamma function.

Example.2 In this example, we use Gompertz Force of mortality for computing

optimal consumption in power utility case

λ(t) = BCx+t, t > 0

and

c∗(t) = e
α(T−t)

γ
Wt

f(t)
.

where

f(t) =

(∫ t

0

e−
(α+Ψ(π∗))(T−s)

γ +
B(Cx+s−Cx)

γ ln(C) ds

)
e

1
γ

(
B(Cx+s−Cx)

ln(C)
−Ψ(π∗)(T−t)

)

4 Numerical Results

Now for simulating Wt, we follow the theorem thad introduced by Applebaum [2]

which said that the integral of

∫ ∞

−∞
y(x)N(t, dx) in wealth equation has compound

poisson distribution. In generally, every compound poisson distribution has a inten-

sity λ and jump size distribution F (x). For example in Jump-Diffusion of Merton,

the jump size distribution is normal or in Kou model is double exponential. In

this paper, we use infinite activity model for stock price behavior, such as Variance-

Gamma (VG) Lévy process. Following by Cont and Tankov [10], we can approx-

imate the infinite activity variance gamma process by compound poisson process

with intensity U(ε) =

∫ ∞

ε

Π(dx) and jump size distribution P ε(x) = Π(dx)
U(ε) 1x≥ε,

in which Π(dx) is VG Lévy measure which introduce in section 2. Recall that, the

Lévy measure for VG process is:

Π(dx) =
1

x
e−

x
λu 1{x>0} −

1

x
e

x
λd 1{x<0}

The intensity and jump size distribution in this model have two part of positive

and negative jump, such that:
U1(ε) =

∫ ∞

ε

e
−x/λu

x
dx = −Ei(− ε

λu
)

U2(ε) = −
∫ −ε

−∞

e
x/λd

x
dx = −Ei(− ε

λd
)
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in which, Ei is representation of exponential integral which introduced by Grad-

shteyn and Ryzhik [15] and the jump size distribution is:
P ε1 (x) =

e
−x/λu
xU1(ε)

1x≥ε

P ε2 (x) = − e
x
/λd

xU2(ε)
1x≤−ε

Finaly, for all process, we have:

P ε(x) = P ε1 (x) + P ε2 (x) U(ε) = U1(ε) + U2(ε)

In this paper, to generate jump size of this distribution, we use the rejection method

that introduced by Cont and Tankov [10]. For this purpose, for positive jump

distribution and for all x ≥ ε, it is obvious that:

P ε1 (x) ≤ fε1 (x)
λue

−ε/λu

εU1(ε)
,

where fε1 (x) = e
− (x−ε)

λu

λu
1x≥ε is a probability density function. Following by Cont

and Tankov(2004), fε1 (x) has a survival function F ε1 (x) = e−
(x−ε)
λu 1x≥ε and inverse

survival function F−1
1ε (x) = ε−λu ln(x). Random variables with distribution P ε1 (x)

may be simulated using the rejection method as follows by Devroye [12]. Simu-

lar posetive jump distribution, we use this method for negative jump distribution.

Observe that for all x ≤ −ε we have:
P ε2 (x) ≤ fε2 (x)

λde
−ε/λd

εU2(ε)

F−1
2ε (x) = λd ln(x)− ε

Also, Vahabi and Payandeh Najafabadi [33] developed the following two algorithm

to generate random variables from P ε1 (x) and P
ε
2 (x), respectively. In this work, we

design a pure-endowment contract in such a way that the benefits of this contract

depend on two markets, one is risk free and the other is risky. In this regard, we

calculated the optimal strategy and optimal consumption rate for this policyholder

over a 20-year time horizon. The simulation results show that the optimal con-

sumption rate behavior is the same as the Merton’s papers [29] and [28], but with

the difference that the effect of jumps in stock asset on the consumption rate is

quite clear. In Figures 1-2, we represent the optimal consumption rate behavior for

both 30 and 60 years of age.
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Figure 1: The behavior of optimal consumption with De Moivre Force of mortality
for T=20, ω = 100, γ = 2.2, µ = 0.28, θ = −0.00799, ρ = 0.864, l = 0.6, r=0.04
and α=0.05 in power utility function with Variance Gamma jump model for two
personal ages.
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Figure 2: Figure4. The behavior of optimal consumption with Gompertz force of
mortality for T=20, C=1.01, B=0.01 , γ = 2.2, µ = 0.28 , θ = −0.00799, ρ = 0.864,
l = 0.6, r=0.04 and α=0.05 in power utility function with Variance Gamma jump
model for two personal ages

Table 1, summarize the optimal strategy simulations for the power utility func-

tion and different values of Variance Gamma jump parameters. All comparisons is

based on the results of Monte Carlo simulations with 200 time steps in each year.
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Table 1: Optimal allocation under the power utility function in a risky stock based
on the moment data reported in Campbell (1997) with T = 20, r = 0.04, P = 0.7,
µ = 0.28, τ = 0.12, g = 0.02 and γ = 3 under Variance-Gamma Model . In the
simulation, there are 200 steps in each year.

θ l ρ π∗

-0.00799 0.6 0.864 0.3901

-0.0007 0.5 0.872 0.3947

-0.004282 0.5 0.794 0.3943

0.00245 0.4 0.671 0.4019

0.001514 0.4 0.632 0.4021

5 Conclusion and suggestion

Specifically, we examine the impact of one special Lévy process categories on the

optimal investment strategy and consumption of a risk-averse investor over finite

horizons. Similar to Cont and Tankov [10], we employed jump parameters in our

model to take into account both uncertainty and the risk of falling stock prices.

We considered two popular forces of mortality in our models. The application of

our findings in pure endowment contracts has been studied. For future studies, we

suggest a family of the stochastic differential equation for modeling the force of

mortality.
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