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Abstract:
Abstract:
This paper has potential implications for the management of the bank. We exam-
ine a bank capital structure with contingent convertible debt to improve financial
stability. This type of debt converts to equity when the bank is facing financial
difficulties and a conversion trigger occurs. We use a leverage ratio, which is in-
troduced in Basel III to trigger conversion instead of traditional capital ratios.
We formulate an optimization problem for a bank to choose an asset allocation
strategy to maximize the expected utility of the bank’s asset value. Our study
presents an application of stochastic optimal control theory to a banking portfo-
lio choice problem. By applying a dynamic programming principle to derive the
HJB equation, we define and solve the optimization problem in the power utility
case. The numerical results show that the evolution of the optimal asset allocation
strategy is really affected by the realization of the stochastic variables characteriz-
ing the economy. We carried out a sensitivity analysis of risk aversion, time and
volatility. We also reveal that the optimal asset allocation strategy is relatively
sensitive to risk aversion as well as that the allocation in CoCo and equity de-
creases as the investment horizon increases. Finally, sensitivity analysis highlights
the importance of dynamic considerations in optimal asset allocation based on the
stochastic characteristics of investment opportunities.
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1 Introduction

Several proposals aimed at enhancing the stability of the financial system include

requiring banks to hold some form of contingent capital, i.e. capital that becomes

available to a bank in the event of a crisis or financial difficulties. Variations of

this idea differ in the choice of trigger for the activation of contingent capital and

in the manner in which capital is held prior to a triggering event. The Dodd-Frank

Financial Reform Bill of 2010 calls on regulators to study the potential effectiveness
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of contingent capital, and specific definitions of trigger events are offered in a recent

advisory paper released by the Basel Committee on Banking Supervision.

[7] proposed reverse convertible debentures, a form of debt that converts into equity

if a bank’s capital ratio falls below a threshold. His proposal uses an equity ratio

based on the market value of the bank’s equity and the book value of its debt. [8]

updated the proposal and renamed contingent capital certificates to securities. [13]

and [21] propose contingent capital with a trigger that depends on both the health

of an individual bank and the banking system as a whole. Convertible securities

designed by the US Treasury for its capital assistance program can be considered a

type of contingent capital in which banks hold the option to convert preferred stock

into common stock and find it beneficial to do so if the market price of their action

falls low enough; this contract is studied in [9]. Alternative proposals for the design

of contingent capital have led to work on valuation. [13] assesses contingent capital

with a dual trigger through a joint simulation of a bank’s stock price and a market

index. [18] compares several cases by simulation in a leaping diffusion model of a

bank’s assets. [1] obtain closed-form pricing expressions assuming that all debt has

an infinite maturity and the conversion trigger is defined by a threshold level of

assets. [19] also uses an asset-level trigger and obtains closed-form expressions with

finite-maturity debt. [22] show that setting the conversion trigger at a stock price

level can lead to multiple solutions or no solution for the market price of stock and

convertible debt, raising questions about the viability of contracts designed with

actions based on a market trigger. We develop a model to study contingent capital

in the form of debt that converts to equity based on a capital ratio trigger. The

bank is required to hold a minimum ratio of capital to total assets.

The optimization problem in the power utility case has attracted increasing atten-

tion from many investment institutions, including insurance companies, pension

management institutions, and commercial banks. We undertake our valuation in a

structural model, starting from the company’s assets. The capital structure of the

company is made up of deposits, contingent capital and equity.

Portfolio selection is one of the most difficult decision problems faced by banking

institutions. The objective of bank managers is to choose an optimal structure of

net worth by allocating assets and liabilities according to the proportions of income

and costs. The first approach to solving a portfolio choice problem is the mean vari-

ance approach developed by Markowitz (1952) in a one-period decision model. It

still has great importance in real applications and is widely applied in risk man-

agement departments of banks. The main reasons for this are the simplicity with

which the algorithm can be implemented and the fact that it does not require any

special knowledge of probability. Indeed, risk is only measured by variance, returns

are normally distributed and bank managers use risk-averse utility functions. A

criticism of the mean variance criterion is the assumption of the static nature of

the financial market or myopic optimization character. This is an extreme simplifi-

cation of reality that completely ignores the highly volatile behavior and dynamic



nature of prices. However, two main approaches dealing with the dynamic portfolio

choice problem use continuous-time models.

The stochastic control theory developed by [14] and [15] was based on the solution of

the HJB equation resulting from dynamic programming under the real-world prob-

ability measure. Several studies related to the dynamic portfolio choice problem in

banking have recently surfaced in the literature (see, for example, [20], [10], [16],

[17], [3]). In particular, [16] suggested an optimal portfolio choice and bank capital

inflow rate that keeps the level of lending as close as possible to an actuarially deter-

mined benchmark process. In this paper, a general case of maximization problem

with constant relative risk aversion utility function is discussed in order to deter-

mine an analytical solution for the associated HJB equation in the case with power

utility function. [14] and [15] studied a problem of consumption and portfolio choice

in continuous time and obtained optimal investment strategies under power utility

and logarithmic utility by using the principle of dynamic programming. [23] studied

an investment consumption problem with borrowing constraints. On this basis, [24]

studied the problem of consumer investment with risky housing. [6] studied the con-

sumption investment problem with HARA utility in incomplete markets. [4] studied

the problem of consumption investment with transaction costs in a finite time hori-

zon. Through deliberation and complicated calculations, [25] obtained the optimal

consumption investment policies with non-exponential discounting and logarithmic

utility. [11] focused on an inconsistent consumption investment problem and ob-

tained instructive results. [11] studied the portfolio choice problem with stochastic

interest rate by applying a stochastic control approach. [5] searched for the optimal

investment problem with minimum guarantee. In this context, we study an optimal

portfolio choice problem for a bank under a stochastic interest rate. We choose the

power utility function because it is very tractable and the optimal asset allocation

strategy is independent of the level of wealth.

Our goal is to present the numerical aspects of solving the Hamilton-Jacobi-Bellman

(HJB) equation and focus on the results of the portfolio choice model from a prac-

tical point of view. This is driven by the need for banks to invest in assets with an

acceptable level of risk and high returns. For example, if the yields on a specific

loan turn out to be very high at the end of a loan contract period, the bank might

regret not having allocated a large enough share of its capital to this type of loan.

A dynamic portfolio position is particularly important in bank risk management, as

most banks select an initial loan portfolio at the start of a loan period but often do

not actively manage their portfolio afterward, unless a possibility of a fault does not

arise. Another motivation for discussing the bank’s optimal portfolio is the failure

of spark risk management strategies and regulatory prescriptions to mitigate this

risk.

One such requirement is the Basel Accord on Capital Adequacy Requirements,

which stipulates that all major international banks hold capital in proportion to

their perceived risks. A dynamic programming principle is used to derive the HJB
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equation. We use the principle of dynamic programming and the method of sep-

aration of variables to obtain explicit solutions to optimal investment strategies.

Finally, we give a numerical example to illustrate our results.

This article is organized as follows. Section 2 introduces the bank’s capital struc-

ture and shows how to manage the main variables of a CoCo bond issue (including

how to choose the trigger indicator and how to set the trigger point and conversion

rate). In section 3, we model the dynamics of banking assets. Next, we define

and solve the optimization problem in the case of a power utility. Indeed, we use

the principle of dynamic programming to derive the HJB equation. In section 4,

we illustrate our results numerically and in the last section, we draw the conclusion.

2 Capital structure and design of CoCo bonds

2.1 Bank capital structure

As in the model of [2] and [14], the bank is assumed to be funded by equity S,

deposits P and a single zero-coupon bond with C as face value and T as due date.

We also assume that the bank makes no payments to its shareholders and does

not raise new shares before the bond matures. Unlike the Black-Scholes-Merton

model, the bond is not entirely traditional. It is divided into two parts: the first is

a debt convertible into equity (contingent convertible bond, CoCo) at zero coupon

with αCct as nominal value, while the second is a traditional zero-coupon bond with

(1−α)Ct, as a nominal value, where α is a coefficient that defines the triggering of

the conversion if is equal to 1 or 0 otherwise.

As the bank’s assets and liabilities must be equal at all times t, we have:

St + αCct + (1− α)Ct + Pt = Vt (1)

Where St represents the equity value, Pt are the deposits, Cct and Ct represent the

values of the CoCo bond and the traditional bond respectively, with Cct = Ct = C,

and Vt represents the value of bank assets. When α = 0, the model is the same as

the Black-Scholes and Merton model without any CoCo bond. When α = 1, all of

the debt is a CoCo bond.

The mechanism of a CoCo bond works as follows: if the trigger is not activated for

the entire period [0, T ], the CoCo bond will behave like a traditional zero-coupon

bond, otherwise, if the trigger is activated at time td with td ∈ [0, T ], the CoCo

bond will be converted into equity with a predetermined conversion ratio β , which

means that the CoCo bond with face value αCct will be transformed into αβ equity

units.
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2.2 Trigger level

How does this work in practice? So far, no conversion of CoCo bonds is based on

leverage. To get an idea of the positioning of triggers in relation to regulatory ratios,

one can look at CoCo bonds whose conversion is based on traditional capital ratios.

Here, we assume that the trigger threshold xd is set at 3%, the minimum level of

Tier 1 leverage ratio required by Basel III. In our model, the Tier 1 leverage ratio

is equal to St/Vt .

Let the fault time td be expressed by the first passage time, if the default occurs

and the conversion will take place, which is defined as follows:

td = inf
{
t ≥ 0, St

Vt
≤ xd

}
(2)

If we represent the value of the CoCo bond at time t by αCct and the value of the

traditional bond by (1− α)Ct, the trigger event can be defined as follows:

St

Vt
≤ xd ⇔ St ≤ xdVt

⇔ Vt − αCct − (1− α)Ct − Pt ≤ xdVt

⇔ Vt ≤ (αCct + (1− α)Ct + Pt)/(1− xd) = Xd

This means that the trigger event based on the leverage ratio (at the xd level) is

now transformed to a trigger event based on the value of the bank’s assets (at the

Xd level). The fact that Xd evolves with time t is inconvenient for us to continue

our analysis. Consequently, we need to choose a trigger level, X, which does not

depend on time t. Indeed, this constant trigger X must be greater than Xd, so

that the conversion into shares can take place before the regulatory minimum is

reached. Unlike risk-free bonds, CoCo bonds and traditional bonds are exposed to

credit risk. So, other things being the same otherwise, they deserve higher yields

to maturity than risk-free bonds, or they are worth less. Similarly, because CoCo

bonds are exposed to higher risks than traditional bonds, they deserve the highest

yields to maturity, or they are worth the least of the three types of bonds.

Let r be the risk-free interest rate, rC and rCc the respective yields to maturity

of the traditional bond and the CoCo bond, we have: rCc ≥ rC ≥ r, and Cc0 =

Ce−rCcT ≤ C0 = Ce−rCT ≤ Ce−rT , where Ce−rT is the current value of the

risk-free bond. As a result, we have:

Xd =
(αCct + (1− α)Ct + Pt)

(1− xd)
≤ Ce−rT + P

1− xd
= X (3)

Where P is the face value of the deposits. Then, the constant trigger X can be

expressed by:

X =
Ce−rT + P

1− xd
(4)



156 Journal of Mathematics and Modeling in Finance

2.3 Conversion rate

The conversion ratio β indicates the number of shares into which each CoCo bond

will be converted. It is the ratio of the conversion amount to the conversion price.

Specifically, the present value of the CoCo bond αC will be transformed into αβ

equity units whose value at td is αβStd , which is equivalent to saying αCctd , where

td is the trigger time. Then, the conversion ratio is given by:

β =
Cctd

Std
(5)

If the conversion of the CoCo bond is triggered at time 0, the wealth of the CoCo

bond holders will be the same before and after the conversion. This means that at

time td = 0, we have:

β =
Cc0
S0

=
Cc0

V0 − αCc0 − (1− α)C0 − P0
(6)

3 Stochastic optimal control

We consider a continuous-time dynamic model in which the bank holds assets (uses

of funds) and has liabilities (sources of funds) that behave stochastically.

Vt = St + Cct + Pt (7)

We assume that St is the equity value that follows a geometric Brownian motion

such that

dSt = µsStdt+ σsStdWs,t (8)

Where µs denotes the drift of the process under the neutral risk measure, σs is the

cash flow volatility, Ws,t is the standard Brownian motion.

In the Vasicek model, the instantaneous dynamics of the interest rate rt is modeled

by an Ornstein-Uhlenbeck process

drt = κ(θ − r)dt+ σrdWr,t (9)

With κ the degree of mean reversion, θ is the long term mean and σr is the volatility

of the interest rate. Note that (κ, θ, σr) ∈ R+R+R+ and constants.

Under the neutral risk probability Q, this process induces a price, at time t, of

zero-coupon bonds with maturity T , which is calculated according to the following

formula:

P (t, T ) = exp{−R∞(T − t) + (R∞ − r) 1−e
−κ(T−t)

κ

− σ2
r

4κ3 (1− e−κ(T−t))2}
(10)
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R∞ = θ +
σrλr
κ

− σ2
r

2κ2

With R∞ and λr represents the yield to maturity of a zero-coupon bond and the

constant interest rate risk premium respectively.

The bank deposit is assumed to be in this study as a risk-free asset satisfying the

following equation:

dPt
Pt

= rdt (11)

The CoCo bond is essentially a debt contingent on the interest rate, we choose to

represent it by means of a geometric Brownian motion which makes the problem

more analytically manageable. So, the price dynamics of the CoCo bond, Cct , is

assumed to be:

dCct = µcC
c
t dt+ σcC

c
t dWc,t (12)

With µc, σc and Wc,t are the drift, the volatility and a standard Brownian motion

of the process Cct .

Suppose the bank’s shareholders can control the volatility of asset values through

an expensive stochastic risk control technology. In fact, bank management must

strategically allocate equity to maximize shareholders’ ultimate wealth before con-

version. Indeed, the change in the value of bank assets is reflected in the change

in equity and CoCos bonds, which encourages the bank to maximize the return on

the portfolio of assets in relation to the risk.

The shareholders are assumed to have a constant relative risk aversion (CRRA)

utility function. Indeed, we formulate the optimization problem and derive the

proxy from its solution. We wish to choose an asset allocation strategy in order

to maximize the expected utility of the value of the bank’s assets at a future date

T > 0.

Let ωs(t) and ωc(t) be the proportions invested in equity and the CoCo bond,

respectively. Moreover, ωp(t) is the proportion invested in the risk-free asset, so

ωp(t) = 1− ωs(t)− ωc(t).

We consider that Vt is the value of bank assets at time t. Due to the independence

of Brownian motions and self-financing assumptions, the value of assets can be

expressed as the following stochastic process:

dVt

Vt
= ωp(t)

dPt

Pt
+ ωs(t)

dSt

St
+ ωc(t)

dCc
t

Cc
t

= (1− ωs(t)− ωc(t))rdt+ ωs(t)µsdt+ ωs(t)σsdWs,t + ωc(t)µcdt

+ωc(t)σcdWc,t

= (rt + (µs − r)ωs(t) + (µc − r)ωc(t))dt+ ωs(t)σsdW(s,t)

+ωc(t)σcdWc,t

(13)

This equation admits a unique strong solution satisfying.

Then, for a well-posed optimization problem, we assumed an additional assumption
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on the admissible controls defined below. The set of admissible controls is given

by:

A = {ω(.) = ω(t)t∈[0,T ],

∫ T

0

(ωs(t)σs)
2 + (ωc(t)σc)

2dt < +∞, P− a.s.}

Mathematically, the stochastic optimal control problem can be stated as follows:

max︸︷︷︸
ω(.)∈A

E(u(V (T ))), where u(.) is a utility function


Vt = ωs(t)St + ωc(t)C

c
t + (1− ωs(t)− ωc(t))Pt

Vt <
St

xd

ωi(t) ≥ 0

(14)

We define the following value function:

H(t, r, V ) = max︸︷︷︸
ω(.)∈A

E(u(V (T )))

with the following boundary condition H(T, r, V ) = u(V )

Stochastic control methods are obvious candidates for solving continuous-time port-

folio problems. This is moreover the approach of [13]. The Hamilton-Jacobi-

Bellman equation associated with the optimization problem can be written directly

as follows:

Ht +Hr(κ(θ − r)) + 1
2Hrrσ

2
r + max︸︷︷︸

ω(.)∈A

[V Hv(r +
(
µs − r)ωs(t) +

(
µc − r)ωc(t))

+ 1
2HV V V

2
(
(ωs(t)σs)

2 + (ωc(t)σc)
2) + V HV r(ωs(t)σs) + ωc(t)σc

)
σr)] = 0

(15)

Where Ht, Hr, HV , Hrr,HV V and HV r are the first-order, second-order, and mixed

partial derivatives of the value function with respect to the variables t, r and V .

Using first-order maximization conditions for optimal investment strategies (see

appendix A), we get 
ω∗
s (t) = − (µs−r)Hv

σs
2V HV V

− σrHV r

σsV HV V

ω∗
c (t) = − (µc−r)HV

σc
2V HV V

− σrHV r

σcV HV V

ω∗
p(t) = 1− ω∗

s (t)− ω∗
c (t)

(16)

By putting (16) in (15), we obtain the equation of HJB as follows:

Ht +Hr(κ(θ − r)) + 1
2Hrrσ

2
r

+V Hv(r +
(
µs − r)(− (µs−r)Hv

σs
2V HV V

− σrHV r

σsV HV V
) + (µc − r)(− (µc−r)HV

σc
2V HV V

− σrHV r

σcV HV V
)
)

+ 1
2HV V V

2
(
((− (µs−r)HV

σs
2V HV V

− σrHV r

σsV HV V
)σs)

2 + ((− (µc−r)HV

σc
2V HV V

− σrHV r

σcV HV V
)σc)

2)

+V HV r

(
(− (µs−r)HV

σs
2V HV V

− σrHV r

σsV HV V
)σs +

(
− (µc−r)HV

σc
2V HV V

− σrHV r

σcV HV V
)σc
)
σr = 0

(17)
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In this article, we assume that the degree of investor risk aversion can be described

by the power utility. We use a change of variable technique to study optimal

investment strategies.

In order to solve this type of Partial Differential Equations, we try to use the

separability condition. In [15], the separability condition represents a common

assumption in the attempt to solve explicitly optimal portfolio problems.

Indeed, we choose a power utility function to obtain a smooth analytical solution

to the maximization problem.

The power utility is given by: u(V ) = V γ/γ, γ < 1 and γ ̸= 0, where γ is the risk

aversion factor.

The value function H can be rewritten as follows:

H(t, r, V ) = (V γ/γ)f(t, r), f(T, r) = 1

The partial derivatives of the previous equation are as follows:

Ht = (V γ/γ)ft

HV = V γ−1f

HV V = (γ − 1)V γ−2f

Hr = (V γ/γ)fr

Hrr = (V γ/γ)frr

HV r = V γ−1fr

Substituting partial derivatives of the value function H into HJB’s equation, leads

to a second order Partial Differential Equations for f of the following form:

(V γ/γ)ft + (V γ/γ)fr(κ(θ − r)) + 1
2 (V

γ/γ)frrσ
2
r

+V γf(r +
(
µs − r)(− (µs−r)V γ−1f

σs
2(γ−1)V γ−1f − σrV

γ−1fr
σs(γ−1)V γ−1f )

+(µc − r)(− (µc−r)V γ−1f
σc

2(γ−1)V γ−1f − σrV
γ−1fr

σc(γ−1)V γ−1f )
)

+ 1
2 (γ − 1)V γf

(
((− (µs−r)V γ−1f

σs
2(γ−1)V γ−1f − σrV

γ−1fr
σs(γ−1)V γ−1f )σs)

2

+((− (µc−r)V γ−1f
σc

2(γ−1)V γ−1f − σrV
γ−1fr

σc(γ−1)V γ−1f )σc)
2
)

+V γfr
(
(− (µs−r)V γ−1f

σs
2(γ−1)V γ−1f − σrV

γ−1fr
σs(γ−1)V γ−1f )σs

+
(
− (µc−r)V γ−1f

σc
2(γ−1)V γ−1f − σrV

γ−1fr
σc(γ−1)V γ−1f )σc

)
σr = 0

(18)

After simplification and by eliminating the dependence of V γ/γ, the equation be-

comes:

ft + fr(κ(θ − r)) + 1
2frrσ

2
r

+γf(r +
(
µs − r)(− (µs−r)

σs
2(γ−1) −

σrfr
σs(γ−1)f ) + (µc − r)(− (µc−r)

σc
2(γ−1) −

σrfr
σc(γ−1)f

)
)

+ 1
2γ(γ − 1)f

(
((− (µs−r)

σs
2(γ−1) −

σrfr
σs(γ−1)f )σs)

2 + ((− (µc−r)
σc

2(γ−1) −
σrfr

σc(γ−1)f )σc)
2
)

+γfr
(
(− (µs−r)

σs
2(γ−1) −

σrfr
σs(γ−1)f )σs +

(
− (µc−r)

σc
2(γ−1) −

σrfr
σc(γ−1)f )σc

)
σr = 0

(19)
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By hypothesis, the solution of PDE, H, therefore has the following form: f(t, r) =

gtexp(Atr) with g and A are regular functions, g(T ) = 1 and A(T ) = 0.

The partial derivatives of the above function are:

ft = A′
trgtexp(Atr) + g′exp(Atr)

fr = gtAtexp(Atr)

frr = gtA
2
t exp(Atr)

A′
trgtexp(Atr) + g′texp(Atr) + gtAtexp(Atr)(κ(θ − r)) + 1

2gtA
2
t exp(Atr)σr

2

+γgtexp(Atr)(r +
(
(µs − r)(− (µs−r)

σs
2(γ−1) −

σrAt

σs(γ−1) ) + (µc − r)(− (µc−r)
σc

2(γ−1) −
σrAt

σc(γ−1)

)
+ 1

2γ(γ − 1)gtexp(Atr)
(
((− (µs−r)

σs
2(γ−1) −

σrAt

σs(γ−1) )σs)
2 + ((− (µc−r)

σc
2(γ−1) −

σrAt

σc(γ−1) )σc)
2
)

+γgtAtexp(Atr)
(
(− (µs−r)

σs
2(γ−1) −

σrAt

σs(γ−1) )σs +
(
− (µc−r)

σc
2(γ−1) −

σrAt

σc(γ−1) )σc
)
σr = 0

(20)

Eliminating the dependence of exp(Atr) and simplifying, we get

g′t + [A′
t + γ − κAt]︸ ︷︷ ︸

ρt

rgt +
[
1
2A

2
tσr

2 + θκAt + γ
(
(µs − r)(− (µs−r)

σs
2(γ−1) −

σrAt

σs(γ−1) )
)

+(µc − r)(− (µc−r)
σc

2(γ−1) −
σrAt

σc(γ−1)

)
+ 1

2γ(γ − 1)
(
((− (µs−r)

σs
2(γ−1) −

σrAt

σs(γ−1) )σs)
2

+
(
(− (µc−r)

σc
2(γ−1) −

σrAt

σc(γ−1) )σc)
2
)
+ γAt

(
(− (µs−r)

σs
2(γ−1) −

σrAt

σs(γ−1) )σs

+
(
− (µc−r)

σc
2(γ−1) −

σrAt

σc(γ−1) )σc
)
σr]gt = 0

(21)

We can calculate the function At so that ρt = 0,

A′
t − κAt = −γ (22)

We note that the resolution of this equation is determined by the solution of a linear

differential equation of order one which has the following form:

At =
γ

κ
[1− exp(κ(T − t))] (23)

Replacing At in (21), we get:

g′t + ϵtgt = 0 (24)

With

εt = 1
2A

2
tσr

2 + θκAt + γ
(
(µs − r)(− (µs−r)

σs
2(γ−1) −

σrAt

σs(γ−1) )
)

+(µc − r)(− (µc−r)
σc

2(γ−1) −
σrAt

σc(γ−1)

)
+ 1

2γ(γ − 1)
(
((− (µs−r)

σs
2(γ−1) −

σrAt

σs(γ−1) )σs)
2 +

(
(− (µc−r)

σc
2(γ−1) −

σrAt

σc(γ−1) )σc)
2
)

+γAt
(
(− (µs−r)

σs
2(γ−1) −

σrAt

σs(γ−1) )σs +
(
− (µc−r)

σc
2(γ−1) −

σrAt

σc(γ−1) )σc
)
σr
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Then the solution of a homogeneous linear differential equation is in the following

form:

gt = exp[ε(t)− ε(T )] (25)

With ε(t) is the primitive of ϵt (see appendix B). Hence the value function H is

given by

Ht = (V γ/γ)exp[(ε(t)− ε(T )) + (
γ

κ
(1− exp(κ(T − t)))r] (26)

with

Hv = V γ−1exp[(ε(t)− ε(T )) + (
γ

κ
(1− exp(κ(T − t)))r]

HV V = (γ − 1)V γ−2exp[(ε(t)− ε(T )) + (
γ

κ
(1− exp(κ(T − t)))r]

HV r = V γ−1(
γ

κ
((1− exp(κ(T − t)))exp[(ε(t)− ε(T )) + (

γ

κ
(1− exp(κ(T − t)))r]

Then the optimal proportions can be rewritten in the following form
ω∗
s (t) = − (µs−rt)

(γ−1)σs
2 − σr

(γ−1)σs
(γκ (1− exp(κ(T − t)))

ω∗
c (t) = − (µc−rt)

(γ−1)σc
2 − σr

(γ−1)σc
(γκ (1− exp(κ(T − t)))

ω∗
p(t) = 1− ω∗

s (t)− ω∗
c (t)

(27)

This equation represents the optimal proportions of the power utility function which

are directly related to the rate of interest and continuous time.

4 Numerical example

In this section, we give a numerical example with a maturity T = 10 years and a

risk-free interest rate r = 0.05 to illustrate the optimal investment strategy in the

context of a power utility. The numerical example is based on MATLAB software.

In order to analyze the impact of the parameters on the optimal strategies, we

assume that the main parameters are given by µs = 0.06; µC = 0.08; σs = 0.3;

σC = 0.5; σr = 0.0003; κ = 0.00037; θ = 0.044 and γ = 0.5. From the strategy ex-

pressions above, we can see that the optimal investment strategy can be influenced

by many market parameters, such as risk aversion factor, volatility, and time. In

this section, we will analyze the sensitivity of optimal investment strategies to the

parameters γ, σr and T , respectively.

Table 1: Optimal proportions invested in CoCo, equity and deposits

ω∗
s (t) 0.0164 0.0174 0.0184 0.0194 0.0204 0.0214 0.0224 0.0234 0.0244 0.0254

ω∗
c (t) 0.0635 0.0641 0.0647 0.0653 0.0659 0.0665 0.0671 0.0677 0.0683 0.0689

ω∗
p(t) 0.9201 0.9185 0.9168 0.9152 0.9136 0.9120 0.9104 0.9088 0.9072 0.9056
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Table 1 shows how the evolution of the optimal asset allocation strategy is actu-

ally affected by the realization of the stochastic variables characterizing the economy.

The optimal asset allocation strategy shows that the optimal proportion invested

in CoCo and equity increases over time. In particular, the proportion of the CoCo

bond increases from an initial value of around 6.35% to just over 6.89%, while the

proportion invested in equity increases from an initial value close to 1.64% to a

proportion of approximately 2.54%. However, deposits play a residual role in the

optimal composition of the bank. At the beginning of the investment period, the

need for a conservative strategy to create a higher level of wealth and lower risk

leads to a high proportion of deposits, while the investment in CoCo and equity is

very weak.

To test the sensitivity of the optimal strategy to changes in the various underlying

variables, we performed a sensitivity analysis of risk aversion, time and volatility.

Figure 1 shows that the proportions of CoCo and equity increase with γ, while the

Figure 1: Effect of degree of risk aversion

proportion of deposits decreases with γ. From the point of view of utility theory,

the risk aversion coefficient for the power utility is given by 1−γ. This means that

the degree of risk aversion of investors will decrease when the value of γ increases.

For a predefined investment horizon and higher risk aversion, i.e. If γ = 0.2, the

allocation is constant over time and the investment behavior seems to stabilize un-

til maturity. In addition, the optimal proportions of CoCo and equity are higher

when the γ value increases, which means a decrease in the degree of risk aversion.

Therefore, the optimal asset allocation strategy is quite sensitive to risk aversion.
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Figure 2: Effect of interest rate volatility

Figure 2 shows that the CoCos and equity optimal proportions decrease as the

interest rate volatility increases. Therefore, CoCo bonds and equity can be used

for the purpose of hedging interest rate uncertainty. The optimal weights evolution

is an increasing function with the time horizon for different values of interest rate

volatility and these weights are higher when the interest rate volatility is low.

Figure 3: Effect of time

Figure 3 shows how the proportions change over time for a given value of gamma

(γ = 0.5). With horizons ranging from 5 years to 15 years the proportion in bank

account increases and remains positive. However, the CoCo and equity allocation

decreases as the investment horizon increases.
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5 Conclusion

This paper has great potential implications for the management of the bank. Con-

tingent capital in the form of debt that converts to equity when a bank faces

financial difficulties has been proposed as a mechanism to improve financial stabil-

ity and avoid costly government bailouts. The specific proposals vary in the choice

of conversion trigger and conversion mechanism.

We analyze the case of contingent capital with a leverage ratio trigger. Indeed,

leverage ratios are used for the first time to trigger equity conversion instead of

traditional capital ratios. Based on non-risk-weighted assets, leverage ratios are

less biased than traditional capital ratios which are based on risk-weighted assets.

They are therefore more effective in warning of an early risk. In this sense, CoCo

bonds with leverage ratios can better strengthen the solvency of banks and thus

better improve financial stability.

Our work presents an application of stochastic control theory to a banking portfolio

choice problem. Applying a dynamic programming principle, we find a closed-form

solution for the power utility function. A case study is given to illustrate our results

and analyze the effect of the parameters on the optimal asset allocation strategy.

Sensitivity analysis highlights the importance of dynamic considerations in optimal

asset allocation based on the stochastic characteristics of the investment opportu-

nity set.

Appendices

Appendix A: Derivation of (16)
By applying the first order conditions, the necessary condition for a relative extremum (maximum
or minimum) is that the first-order derivative be zero, that is, the derivative of (15) be zero. For
the proportions invested in equity and the CoCo bond, we derive (15) with respect to ωs(t) and
ωc(t) respectively, and we obtain the following system:


V HV (µs − r) +HV V V 2ω∗

s (t)σ
2
s + V HV rσsσr = 0

V HV (µc − r) +HV V V 2ω∗
c (t)σ

2
c + V HV rσcσr = 0

ω∗
p(t) = 1− ω∗

s (t)− ω∗
c (t)

Then, we get


ω∗
s (t) = − (µs−r)Hv

σs
2V HV V

− σrHV r
σsV HV V

ω∗
c (t) = − (µc−r)HV

σc
2V HV V

− σrHV r
σcV HV V

ω∗
p(t) = 1− ω∗

s (t)− ω∗
c (t)

Appendix B: Derivation of the primitive of ϵt
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ε(t) = 1
2
( γ
κ
)2[t− 2

exp(κ(T−t))
κ

+
exp(2κ(T−t))

2κ
]σ2

r + θγ[t− exp(κ(T−t))
κ

]

− γ
γ−1

[− 1
2
(((

(µs−r)

σ2
s

)2t+ 2
(µs−r)

σ2
s

σr
σs

γ
κ
[t− exp(κ(T−t))

κ
]

+(σr
σs

)2( γ
κ
)2[t− 2

exp(κ(T−t))
κ

+
exp(2κ(T−t))

2κ
])σ2

s

+((
(µc−r)

σ2
c

)2t+ 2
(µc−r)

σ2
c

σr
σc

γ
κ
[t− exp(κ(T−t))

κ
]

+(σr
σc

)2( γ
κ
)2[t− 2

exp(κ(T−t))
κ

+
exp(2κ(T−t))

2κ
])σ2

c )

+((
(µs−r)

σ2
s

γ
κ
[t− exp(κ(T−t))

κ
] + σr

σs
( γ
κ
)2[t− 2

exp(κ(T−t))
κ

+
exp(2κ(T−t))

2κ
])σs

+(
(µc−r)

σ2
c

γ
κ
[t− exp(κ(T−t))

κ
] + σr

σc
( γ
κ
)2[t− 2

exp(κ(T−t))
κ

+
exp(2κ(T−t))

2κ
])σc)σr]
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