
Journal of Mathematics and Modeling in Finance (JMMF)
Vol. 3, No. 1, Winter & Spring 2023

Research paper

Deep learning for option pricing under Heston and Bates
models

Ali Bolfake1, Seyed Nourollah Mousavi2, Sima Mashayekhi3

1 Department of Mathematics, Faculty of Sciences, Arak University, Arak, Iran
ali.bolfake@gmail.com

2 Department of Mathematics, Faculty of Sciences, Arak University, Arak, Iran
n-mousavi@araku.ac.ir

3 Department of Mathematics, Faculty of Sciences, Arak University, Arak, Iran
s-mashayekhi@araku.ac.ir

Abstract:
This paper proposes a new approach to pricing European options using
deep learning techniques under the Heston and Bates models of random
fluctuations. The deep learning network is trained with eight input hyper-
parameters and three hidden layers, and evaluated using mean squared
error, correlation coefficient, coefficient of determination, and computation
time. The generation of data was accomplished through the use of Monte
Carlo simulation, employing variance reduction techniques. The results
demonstrate that deep learning is an accurate and efficient tool for op-
tion pricing, particularly under challenging pricing models like Heston and
Bates, which lack a closed-form solution. These findings highlight the po-
tential of deep learning as a valuable tool for option pricing in financial
markets.
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1 Introduction

The Black-Scholes model, introduced in 1973 by Fischer Black and Myron Sc-

holes [3], has become a widely adopted standard method for pricing options in the

financial industry. However, despite the success of the Black-Scholes model, some of

its assumptions do not accurately reflect the realities of financial markets [4,22]. For

example, empirical analyses of key market indices such as the S&P500 or Nasdaq

Composite demonstrate that prices do not conform to the Gaussian distribution

assumed by the Black-Scholes model [5,25]. Furthermore, the assumption of a con-

stant parameter for implied volatility in the Black-Scholes model is not supported

by empirical evidence [9].

2Corresponding author

Received: 05/04/2023 Accepted: 24/07/2023

https://doi.org/10.22054/JMMF.2023.73263.1085



68 Journal of Mathematics and Modeling in Finance

These findings highlight the need for alternative option pricing models that can

better account for the complexities and dynamics of financial markets [2]. In par-

ticular, the discontinuous behavior of stock prices is not sufficiently captured by

the Brownian motion assumed in the Black-Scholes model. To overcome this issue,

several models have been developed, including the stochastic volatility model of

Heston [13], and its generalization for incorporating jumps in stock prices, known

as the Bates model [2].

The Heston model is a popular choice for modeling the dynamics of stock prices

with stochastic volatility. In this model, the volatility of the stock price is assumed

to follow a separate stochastic process from the stock price itself, which allows

for greater flexibility in capturing the volatility smile observed in the market [13].

The Bates model, on the other hand, incorporates jumps in stock prices as well as

stochastic volatility. This model has been shown to provide a better fit to market

data than the Black-Scholes model, especially for options with short maturities [2].

The Heston model and the Bates model are both examples of stochastic volatility

models, which have become increasingly popular in recent years due to their ability

to capture the volatility smile observed in the market.

Machine learning techniques have been increasingly explored for financial engi-

neering and option pricing in recent years due to their potential to capture complex

patterns in market data and adapt to changing market conditions. These models

have shown promise in improving the accuracy of option pricing and have the poten-

tial to outperform traditional models such as the Black-Scholes model [7,15,16,24].

One popular approach in machine learning for option pricing is the use of neural

networks. Neural networks can be used to approximate the payoff function of

an option based on the underlying asset price and other relevant features [7, 26].

In addition, deep learning techniques, such as convolutional neural networks and

recurrent neural networks, have also been applied to option pricing [7,18].

Another approach in machine learning for option pricing is the use of reinforce-

ment learning. Reinforcement learning is a type of machine learning that involves

training an agent to make decisions based on the rewards or penalties it receives

for its actions. In option pricing, reinforcement learning can be used to learn an

optimal trading strategy based on market data and other relevant features [17].

Despite the potential benefits of machine learning techniques for option pricing,

there are also challenges associated with their use. These models can be compu-

tationally intensive and require large amounts of training data. In addition, the

interpretability of these models can be a concern, as it can be difficult to understand

how they arrive at their predictions.

In this article, we address the classic problem of option pricing with two models

of random fluctuations, Heston and Bates, using deep learning. For this purpose,

we design an architecture for deep learning. Due to the need for large amounts

of data for learning models, we will use Monte Carlo methods along with variance

reduction techniques to generate data optimally. We will demonstrate that using
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variance reduction techniques leads to generating data with better accuracy for the

learning model and, as a result, better accuracy in option pricing. By reviewing and

comparing the results, we will show that deep learning is a powerful and reliable

competitor to existing methods.

The structure of this article is as follows: In section 2, the pricing of European

options and the Heston and Bates fluctuation models, along with their character-

istic function to determine the actual value of the option price, are summarized

in section 2. In section 3, the concepts of Monte Carlo methods, Monte Carlo

methods with antithetic variate, and Monte Carlo methods with control variate

are explained. In section 4, some concepts and computational methods of machine

learning and artificial neural networks are briefly reviewed, and a brief explanation

of the Tensorflow software library for deep learning is provided. In section 5, the

computational concepts and methods presented in sections 2, 3, and 4 are used for

a deep learning model to predict the pricing of European options under random

fluctuation models, and the results are reported in general. Finally, in section 6,

we will interpret the main findings and draw conclusions.

2 Pricing of Options and Random Fluctuation Models

Financial derivatives are financial instruments traded in financial markets. As the

name suggests, derivative instruments are derived from other underlying financial

instruments, and the cash flows of a derivative depend on the prices of the under-

lying instruments [14].

Given the risks in financial markets, there is a great demand for predicting the

future behavior of securities. Derivative instruments respond to this need and con-

tain information for estimating the behavior of a security in the future. There are

three general categories of derivatives, namely forward contracts, futures contracts,

and options. Options are derivatives that can be applied to any underlying asset,

including other derivative instruments. An investor may be more interested in the

profit that can be obtained by entering into an option contract than actually own-

ing the asset on which the option is based, as is the case with futures or forwards

contracts. Options are divided into two categories, independent of path and depen-

dent on path. The most common path-independent options are European options,

and these options come in two types: call options and put options, which we use

call options in this article.

Consider an underlying asset S. The price of a European call option on S(t) is

denoted by C(t) and gives the holder the right to buy the underlying asset at a

strike price K at a future time T > t. At t = T , when the option expires, the value

of the option C(t) is clearly defined by [14]:

C(T ) = max{S(T )−K, 0}. (1)

We consider two models of random fluctuations: the Heston model and the Black-
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Scholes model. The next section provides a general overview of each model along

with an analytical formula for the characteristic function that is efficient for pricing

options.

2.1 The Heston stochastic volatility model

The Heston model [5], introduced in 1993, is a stochastic volatility model in which

the dynamics of the stock price’s risk-neutral volatility are governed by

dSt = (r − q)Stdt+
√
νtStdW

(1)
t ,

dνt = k(θ − νt)dt+ ξ
√
νtdW

(2)
t , (2)

Cov(dW
(1)
t , dW

(2)
t ) = ρdt

where r, q, θ, k, ξ, and ρ are constants, W
(1)
t and W

(2)
t are standard Brownian

motions with correlation ρ, and νt denotes the instantaneous variance of the stock

price, which follows a mean-reverting square-root process. The covariance between

W
(1)
t and W

(2)
t is given by ρdt. The Heston model is widely used in quantitative

finance for modeling and pricing derivatives on assets with stochastic volatility.

The Black-Scholes model assumes constant volatility, whereas in the Heston

model, volatility follows a stochastic process known as the Cox-Ingersoll-Ross (CIR)

process. This process, which reverts to a long-term mean, is controlled by the pa-

rameter k that determines the rate of reversion to the mean value η. High values of

k make the process deterministic, quickly smoothing out any deviation from η. By

including stochastic volatility, the Heston model can capture the observed empirical

skewness in implied volatilities, making it a flexible and robust model. The param-

eter ρ represents the correlation between the level and volatility, while θ represents

the volatility of volatility. Skewness of the return distribution is controlled by ρ,

while θ affects kurtosis. The CIR process was first successfully used in interest rate

modeling.

The characteristic function of the logarithmic price process in the Heston model,

of which a derivative can be found in [9], is presented as follows:

ϕ(u, t) = E
[
eiu log(St)

∣∣∣S0, σ
2
0

]
= eA(u,t)+B(u,t)+C(u,t), (3)

where
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A(u, t) = iu log(S0) + iu(r − q)t,

B(u, t) =
ηk

θ2
(k − ρθiu− d)t− 2 log

(
1− ge−dt

1− g

)
,

C(u, t) =
σ0
θ2

(k − ρθiu− d)(1− e−dt)

1− ge−dt
,

d(u) =

√
(ρθiu− k)2 + θ2 (ui+ u2),

g(u) =
k − ρθiu− d
k − ρθiu+ d

.

The Heston model incorporates stochastic volatility through the Cox-Ingersoll-

Ross (CIR) process, which reverts to a long-term mean and is controlled by the

parameter k that determines the rate of reversion to the mean value η. The cor-

relation between the level and volatility is represented by the parameter ρ, while

θ represents the volatility of volatility. The Heston model is able to capture the

observed empirical skewness in implied volatilities, making it a flexible and robust

model [9].

2.2 Monte Carlo Methods

Monte Carlo (MC) methods are commonly used to estimate the expected value

of a random variable X from independent and identically distributed samples

X1, . . . , Xn, where µ = E(X). The sample mean, µ̂n = 1
n

∑n
i=1Xi, is used as

an estimator for µ, and the law of large numbers guarantees that this estimator

converges to the true value of µ as the sample size increases [10].

In more complex scenarios, X may be a function of other random variables, and

the law of large numbers is replaced by the Kolmogorov’s law of large numbers

which states that the expected value of a function f(X) can be estimated as the

sample mean of f(Xi) as n approaches infinity.

MC methods are commonly used in financial engineering for pricing derivatives,

such as European options, under uncertain market conditions. By simulating the

dynamics of asset prices based on a model’s parameters and initial conditions, we

can easily simulate the entire path of the stock prices up to the expiration date T .

For European options, the value of the option at the expiration date is determined

by the realized value of the underlying asset at that time, which can be calculated

using the simulated paths and the payoff function of the option. The option price

is then estimated as the discounted average of the payoffs across all simulated

paths [10].
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2.3 Variance Reduction Techniques

In the field of Monte Carlo simulation, reducing the variance of a random variable

is a key factor in improving the efficiency and accuracy of the simulation. Suppose

that E[(X)2] < ∞, where X is a random variable, and the standard deviation

of X is defined as σ =
√
E[(f(X)− E[f(X)])2]. The Monte Carlo error can be

represented by ϵn = E[f(X)] − 1
n

∑n
i=1 f(Xi), where Xi is a sample of size n. It

is shown that the mean square error of E[ϵn(f,X)] = σ√
n
can be achieved. Thus,

the error in Monte Carlo simulation can be reduced to σ/
√
n. However, it should

be noted that controlling the error only provides information about the expected

error, and does not provide any information about the error in the actual simulation

paths. The error is proportional to the standard deviation of the random variable

f(X), so the efficiency of Monte Carlo simulations can be improved by reducing

Var[f(X)] using variance reduction techniques.

Two main strategies for reducing variance are utilizing model features to adjust

simulation outputs and reducing input fluctuations. In particular, we discuss Monte

Carlo methods with antithetic variate and control variate, among other available

techniques. In this paper, we utilize variance reduction techniques mentioned in

references [21] for simulating random oscillation models using Monte Carlo meth-

ods.

3 Deep Learning

Deep learning is a powerful branch of machine learning that has gained significant

success in various fields of artificial intelligence and machine learning. It models

high-level abstract concepts by learning at different levels, which involves more than

two layers of a model. To achieve this, deep learning uses artificial neural networks

that have many hidden layers [11]. TensorFlow, a powerful open-source software

library, is used to train neural networks with more than two layers. TensorFlow

represents all calculations and samples in a machine learning algorithm, including

mathematical operations, parameters, and update rules at a large scale [?].

Supervised learning is another approach to machine learning used to train a

model. In this approach, the machine is trained with labeled training data, allow-

ing it to make good decisions about previously unseen labeled data it may encounter

in the future. This approach uses concepts such as loss function, cost function, gra-

dient descent algorithm, backpropagation algorithm, activation functions (ReLU,

SELU, and Softplus), and Adam algorithm to train the model [19,23].

Traditional pricing models are based on an underlying process that reproduces

the empirical relationship between observable option data and underlying stock

data, while machine learning methods do not assume any underlying process. Re-

gression, a technique for predicting the output variable based on the input variables,

is used to interpret the effect of inputs on the output. Machine learning algorithms
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build a mathematical model based on sample data, known as ”training data”, which

is then used to make predictions or decisions without being explicitly programmed

to perform the task [8, 20].

Developing an efficient deep learning model involves critical elements such as

the selection of layers and neurons, the utilization of activation functions, and the

implementation of network optimization algorithms. Researchers conduct experi-

ments to fine-tune these elements and determine the optimal configuration. The

quantity of layers plays a pivotal role in capturing patterns while preventing over-

fitting. Striking the right balance is challenging because a scarcity of layers might

disregard intricate patterns, while an excess of layers can lead to overfitting. Sim-

ilarly, the number of neurons determines the model’s capacity and expressiveness.

Researchers experiment with various neuron arrangements to find a compromise

between model complexity and generalization capability. Activation functions in-

troduce nonlinearities, allowing the model to represent intricate relationships. Re-

searchers explore different activation functions such as sigmoid, tanh, and ReLU

to discover the most appropriate choices for each layer. Furthermore, network op-

timization algorithms like SGD, Adam, or RMSprop have a significant impact on

model training. Researchers experiment with various optimization algorithms to

achieve the best convergence and generalization performance.

Deep learning has been widely applied in the financial industry to model com-

plex data patterns and extract useful information for investment and risk manage-

ment [12]. It has shown remarkable results in areas such as stock price prediction,

portfolio optimization, credit risk assessment, fraud detection, and algorithmic trad-

ing.

4 Numerical results in the application of deep learning
in option pricing

In this section, we present a model for determining the price of European options un-

der stochastic volatility models using Monte Carlo methods explained in Subsection

2.2 and high-precision deep learning networks. This trained model demonstrates

that deep learning can be used to learn pricing models for European call options

in various markets.

We use deep learning for pricing European options using simulated data to train

the model. We generate eight sets of data using four methods, including the exact

and explicit European formula under specified characteristic functions of stochastic

volatility models explained in Subsection 2.1, Monte Carlo simulation for European

option pricing, Monte Carlo simulation with antithetic variate for European option

pricing, and Monte Carlo simulation with control variate for European option pric-

ing explained in Subsection 2.3.

We use the parameter values required for the range of parameter values in Table 1

for eight price data sets. Then, we divide the generated data into two sets, training
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and testing data sets.

Table 1: Parameters and ranges

Parameter Range

Stock price (S) $50 – $700

Strike price(K) $10 – $500

Maturity(T) (1 - 3)years

Risk free rate(r) 1%– 3%

Volatility(V0) 1%− 90%

Call price(C) $0− $400

volatility of volatility(θ) 0%– 90%

Revert rate(k) 0− 10

Long-term volatility(η) 1%− 90%

Correlation(ρ) −0.9 – 0.9
Random percentage jump(µJ) −0.1 – 0.1

Jump volatility(σJ) 0.1 – 0.2

Annual jump frequency(λJ) 0.1 – 0.2

With respect to the range of option parameters in Table 1, we generate a large

amount of data randomly. Given the linear homogeneity assumption in [6] and

the theory of European option pricing, it can be inferred that the option price C

is linearly dependent on the stock price S and the strike price K, and therefore

the data can be normalized by dividing the option and stock prices by the exercise

price. Considering the normalization of European option prices, we normalize the

parameters with respect to the parameter K and enter them into the deep learning

model.

Now, with respect to the four methods in each stochastic model, we generate

eight sets of data with sizes of 10,000 and 20,000, respectively. We then divide the

data into training and test sets. We subsequently create a validation set from a

portion of the test set. We first split the overall data into training (80%) and a set

of tests (20%), then allocate 20% of the test data to the validation set.

Figure 1 illustrates the data generation process flowchart for pricing European

options under the Heston and Bates models. The first flowchart demonstrates the

data generation process for the explicit and precise formula for pricing European

options under the characteristic function of the stochastic models. In this process,

we first randomly generate the parameters and then use the obtained parameters

in the precise formula for pricing European options, i.e., the European option price.

The second flowchart depicts the data generation process for Monte Carlo methods

for pricing European options using 1000 simulated numbers.

As we proceed with the discussion of the deep learning model, we must acknowl-
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Figure 1: Flowchart of the process for generating data for pricing European call
options under each mentioned model.

edge that many experiments were conducted in order to determine the optimal

number of layers, the number of neurons in each layer, and the type of activation

function in each layer, as well as the type of algorithm for network optimization.

According to Figure 2, the details of the deep learning network for option pric-

ing are as follows: The network has 8 input hyperparameters, which are tuned by

activating functions through 3 hidden layers, each consisting of 150, 100, and 20

neurons, respectively. ReLU activation function is chosen for the first layer, while

SELU activation function is selected for the second and third layers. In the final

output layer, which has a unique neuron, the exponential activation function is

used to perform the computational operations. The softplus activation function

is utilized because the option price cannot be a negative value. In this learning

algorithm, we use the mean square error (MSE) cost function and the Adam opti-

mization method for this deep learning network. This model is trained using the

Tensorflow library.

Deep learning models can be better comprehended by using visual aids like

flowcharts and diagrams. The plot model function in the keras .utils library can

generate such visual representations that showcase the structure, connections be-

tween layers, and flow of data. For even more improved clarity and aesthetics, the

visualizer function in the keras visualizer library enables customization of colors,

shapes, and labels.

Using these functions enables researchers and practitioners to intuitively describe

their deep learning models, making it easier to communicate their design and struc-

ture. These representations facilitate deeper understanding of deep learning models

by providing a visual understanding of their architecture and flow.

Using the generated data from the previous section, we train a model for option

pricing. This process is repeated 50 times. For each data group with a training

set and a test set allocation, we use the data for training the deep learning model
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Figure 2: Flowchart and overall diagram of the deep learning model for predicting
option pricing under stochastic volatility models.

50 times with 10 random initial states. Overall, each sample group is used for

deep learning model training 500 times under different allocations and initial states.

Each deep learning model provides 21201 parameter values as outputs, comprising

of 20900 weight parameters and 301 bias parameters.

After 500 epochs of deep learning, we report three criterion for the effectiveness

of deep learning: mean squared error (MSE), correlation coefficient ρ between the

original and predicted data, and the R2 value for the test set of each data group.

Tables 2 and 3 present the performance metrics of deep learning in pricing Eu-

ropean call options using 8 price datasets divided into two groups of 10,000 and

20,000, respectively, based on the test set generated using 4 methods for pricing Eu-

ropean call options. The results obtained from the generated data are generally as

follows: mean squared error (MSE), correlation coefficient (ρ), and R2 value in the

test set are almost equal to 0, 1, and 1, respectively, indicating good performance

of the model on the 8 price datasets. After demonstrating the strong performance

of deep learning on different data sizes, we provide a visual representation of its

effectiveness.

In the visualized results, we report 5 criteria for evaluating the efficacy of deep

learning: the first column displays the predicted prices obtained through deep learn-

ing in comparison to the price data generated by the computer based on four meth-

ods for each model (Heston/Bates). The second column shows the distribution of

absolute prediction errors to evaluate standardized option pricing errors using deep

learning and price data generated by four methods in each model (Bates/Heston).

The third column illustrates the learning curve of the model for mean squared error

(MSE) on the training set and validation data set produced by four methods in each

model (Heston/Bates). The fourth column depicts the distribution of squared error
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Table 2: Numerical results for four option price datasets with 10,000 and 20,000
data points under the Heston model using three performance metrics

Methods Sample size MSE ρ R2

The exact formulas
10000 6.17E-06 0.9983 0.9994

20000 8.72E-06 0.9988 0.9994

MC
10000 3.44E-04 0.9959 0.9961

20000 4.13E-04 0.9969 0.9973

MC with antithetic variate
10000 6.36E-03 0.9933 0.9928

20000 1.67E-04 0.9946 0.9936

MC with control variate
10000 2.59E-04 0.9951 0.9949

20000 3.17E-04 0.9966 0.9971

on the test set, where the y-axis indicates the probability of normal error. Column

5 is related to predicting option prices relative to actual option prices in the test

data.

Figures 3 and 4 illustrate, in rows one through four, the data generation process

using the closed-form formula based on the characteristic function, Monte Carlo

simulation, Monte Carlo simulation with antithetic variate, and Monte Carlo sim-

ulation with control variate for each model (Heston/Bates), respectively.

Figure 3 shows the performance of deep learning in predicting European call

option prices under the Heston model using four data generation methods and five

evaluation metrics. The results are presented in the form of graphs, where the first

Table 3: Numerical results for four option price datasets with 10,000 and 20,000
data points under the Bates model using three performance metrics

Methods Sample size MSE ρ R2

The exact formulas
10000 7.33E-06 0.9989 0.9996

20000 9.01E-06 0.9994 0.9998

MC
10000 4.28E-04 0.9940 0.9957

20000 8.67E-04 0.9963 0.9966

MC with antithetic variate
10000 3.82E-05 0.9975 0.9978

20000 5.19E-05 0.9978 0.9988

MC with control variate
10000 4.91E-05 0.9975 0.9981

20000 8.81E-05 0.9979 0.9990
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Figure 3: Flowchart of the process for generating data for pricing European call
options under each mentioned model.

column shows that for all four methods, the predicted prices are very close to the

actual prices. The second column shows that the pricing errors for the test data

set are within the range of ±0.02 for all methods under the Heston model. The

third column shows that the deep learning curves for MSE on the training and

validation data sets converge after about 6 epochs. The fourth column shows that

the distribution of the squared error is mostly very small. The fifth column shows

that the predicted path of option prices closely follows the actual path for all four

methods under the Heston model.

Figure 4 displays the performance of deep learning models using five metrics

for four different data production methods for European option pricing under the

Bates model. The results are obtained using the plotted graphs as shown in the

figure. For each of the four methods in the Bates model, which are used for the

test set, almost all price pairs are very close to a thin line at a 45-degree angle in

the first column. This indicates that the predicted prices are close to the actual

option prices that are inputted into the deep learning model.
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In the second column, it is observed that most pricing errors for the test set

under each of the four methods in the Bates model are within the range of ±0.02.
In the third column, it can be seen that the deep learning curve for the mean

squared error (MSE) for both the training and validation data sets under each of

the four methods in the Bates model appears to converge after 12 epochs.

The fourth column displays the distribution of the squared error on the test set,

where it is evident that most errors are very small. Finally, in the fifth column, the

prediction path of the option prices is compared to the actual data in the test set,

and it is observed that the predictions are very accurate for all four methods in

the Bates model. These results demonstrate the effectiveness of the deep learning

models for European option pricing under the Bates model using the four different

data production methods.

Figure 4: Flowchart of the process for generating data for pricing European call
options under each mentioned model.

In summary, the deep learning model trained using four data generation methods

has performed well in predicting European call option prices under the Heston and

Bates models, as evidenced by the very small pricing errors and good convergence
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of the deep learning curves.

4.1 Numerical analysis efficiency

In this analysis, we discussed the application of deep learning in pricing European

options. Finally, we examine the efficiency of the deep learning method. Table

4 compares the time to compute 1000 or 10000 European call options using five

methods: the deep learning method presented by D.L. explained in Section 3, the

characteristic function models for stochastic volatility discussed in Subsection 2.1,

Monte Carlo simulation method, Monte Carlo simulation method with antithetic

variate, and Monte Carlo simulation method with control variate models for stochas-

tic volatility in Subsection 2.3.

Table 4: The computation time.

Number of Heston model

option prices

D.L nExact formula MC MC with AV MC with CV

1000 0.43 98.14 105 105 106

10000 0.66 139.22 107 107 108

Bates model

D.L Exact formula MC MC with AV MC with CV

1000 0.56 101.00 105 105 106

10000 0.79 147.91 107 107 108

5 Conclusion

In this study, we investigated the pricing of European options under two models

of random fluctuations, namely Heston and Bates, using a data-driven approach

based on deep learning. To achieve this, we generated random pricing data using

various methods such as analytical formula under the characteristic function of the

stochastic models, standard Monte Carlo (MC), MC with antithetic variate, and

MC with control variate, for a range of required parameters.

We designed a deep learning network with eight input hyperparameters and

three hidden layers. The ReLU activation function is used for the first layer, while

the SELU activation function is used for the second and third layers. The network

employs the exponential activation function in the final output layer and the soft-

plus activation function to prevent negative values. To train the network, we used

the mean square error cost function and the Adam optimization method, and the
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Tensorflow library was utilized for implementation.

In the accuracy analysis, three criteria, namely mean squared error (MSE), corre-

lation coefficient (ρ) between the original and predicted data, and the coefficient of

determination (R2), were computed for various scenarios. Furthermore, the compu-

tation time of the considered methods was recorded. The results demonstrate that

the deep learning method is reliable for pricing models of random fluctuations from

both accuracy and computational time perspectives. Additionally, generating more

accurate data using variance techniques leads to better accuracy in option pricing.

The deep learning method significantly reduces computational time compared to

competitive methods.
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