- قباخلو، م.؛ رجبزاده قطری، ع.؛ طلوعی اشلقی، ع؛ و البرزی، م. (1401). طراحی سیستم پیشنهاد بانکی فردی با استفاده از تجزیهوتحلیل احساسات در رسانههای اجتماعی. مطالعات مدیریت کسبوکار هوشمند، 10(39)، 289-257. https://doi.org /10.22054/ims.2021.59775.1932
- Al-Hashedi, K. G., & Magalingam, P. (2021). Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019. Computer Science Review, 40, 100402. https://doi.org/10.1016/j.cosrev.2021.100402
- Bisong, E. (2019). Optimization for Machine Learning: Gradient Descent. In E. Bisong (Ed.), Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners (pp. 203-207). Apress. https://doi.org/10.1007/978-1-4842-4470-8_16
- Brownlee, J. (2020). Data preparation for machine learning: data cleaning, feature selection, and data transforms in Python. Machine Learning Mastery. https://www.google.com/books/edition/Data_Preparation_for_Machine_Learning/uAPuDwAAQBAJ?hl=en&gbpv=1&dq=Data%20Preparation%20for%20Machine%20Learning&pg=PP1&printsec=frontcover
- Brownlee, J. (2021). How to choose an activation function for deep learning. Machine Learning Mastery. https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
- Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey. arXiv preprint arXiv:1901.03407. https://doi.org/10.48550/arXiv.1901.03407
- Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 1-58. https://doi.org/10.1145/1541880.1541882
- Crop Insurance Statistics. (2022). Cropinsurance.org. Retrieved July 22, 2022, from https://cropinsurance.org/wp-content/uploads/2021/02/2020-Crop-Insurance-Myths-v-Facts-Improper-Payment-Rate.pdf
- Debener, J., Heinke, V., & Kriebel, J. (2023). Detecting insurance fraud using supervised and unsupervised machine learning. Journal of Risk and Insurance. https://doi.org/10.1111/jori.12427
- Ekin, T., Lakomski, G., & Musal, R. M. (2019). An unsupervised Bayesian hierarchical method for medical fraud assessment. Statistical Analysis and Data Mining. The ASA Data Science Journal, 12(2), 116-124. https://doi.org/10.1002/sam.11408
- Finke, T., Krämer, M., Morandini, A., Mück, A., & Oleksiyuk, I. (2021). Autoencoders for unsupervised anomaly detection in high energy physics. Journal of High Energy Physics, 2021(6), 1-32. https://doi.org/10.1007/JHEP06(2021)161
- Fraud stats. (2020). Retrieved from https://insurancefraud.org/fraud-stats/
- (2006). Crop insurance: More needs to be done to reduce program's vulnerability to fraud, waste, and abuse. Retrieved from https://www.gao.gov/assets/gao-06-878t.pdf
- Gomes, C., Jin, Z., & Yang, H. (2021). Insurance fraud detection with unsupervised deep learning. Journal of Risk and Insurance, 88(3), 591-624. https://doi.org/10.1111/jori.12359
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. https://www.google.com/books/edition/Deep_Learning/omivDQAAQBAJ?hl=en&gbpv=1&dq=deep+learning+goodfellow&pg=PR5&printsec=frontcover
- Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances. Expert Systems with Applications, 193, 116429. https://doi.org/https://doi.org/10.1016/j.eswa.2021.116429
- Kim, D., Lee, S., & Lee, J. (2020). An ensemble-based approach to anomaly detection in marine engine sensor streams for efficient condition monitoring and analysis. Sensors, 20(24), 7285. https://doi.org/10.3390/s20247285
- Kirlidog, M., & Asuk, C. (2012). A fraud detection approach with data mining in health insurance. Procedia-Social and Behavioral Sciences, 62, 989-994. https://doi.org/https://doi.org/10.1016/j.sbspro.2012.09.168
- Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11-26. https://doi.org/https://doi.org/10.1016/j.neucom.2016.12.038
- Marzen, C. G. (2013). Crop Insurance Fraud and Misrepresentations: Contemporary Issues and Potential Remedies. SSRN Electronic Journal, 675-707.
- Miao, J., & Niu, L. (2016). A Survey on Feature Selection. Procedia Computer Science, 91, 919-926. https://doi.org/10.1016/j.procs.2016.07.111
- Newlands, N., Ghahari, A., Gel, Y. R., Lyubchich, V., & Mahdi, T. (2019). Deep learning for improved agricultural risk management. https://scholarspace.manoa.hawaii.edu/bitstream/10125/59543/1/0103.pdf
- Nian, K., Zhang, H., Tayal, A., Coleman, T., & Li, Y. (2016). Auto insurance fraud detection using unsupervised spectral ranking for anomaly. The Journal of Finance and Data Science, 2(1), 58-75. https://doi.org/https://doi.org/10.1016/j.jfds.2016.03.001
- Raschka, S., & Mirjalili, V. (2019). Python machine learning: Machine learning and deep learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd. https://www.igi-global.com/pdf.aspx?tid%3D267132%26ptid%3D254262%26ctid%3D17%26t%3Dpython+machine+learning%3A+machine+learning+and+deep+learning+with+python%2C+scikit-learn%2C+and+tensorflow+2%2C+third+edition%26isxn%3D
- Rezapour, M. (2019). Anomaly detection using unsupervised methods: credit card fraud case study. International Journal of Advanced Computer Science and Applications, 10(11).
- Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
- Yaram, S. (2016, 23-25 Aug. 2016). Machine learning algorithms for document clustering and fraud detection. Paper presented at the 2016 International Conference on Data Science and Engineering (ICDSE). https://doi.org/10.1109/ICDSE.2016.7823950
- Zamini, M., & Montazer, G. (2018). Credit Card Fraud Detection using autoencoder based clustering. Paper presented at the 2018 9th International Symposium on Telecommunications (IST). https://doi.org/10.1109/ISTEL.2018.8661129
- Zhang, C., Liu, J., Chen, W., Shi, J., Yao, M., Yan, X.,... Chen, D. (2021). Unsupervised Anomaly Detection Based on Deep Autoencoding and Clustering. Security and Communication Networks, 2021, 7389943. https://doi.org/10.1155/2021/7389943
- Zhao, Y., Nasrullah, Z., & Li, Z. (2019). Pyod: A python toolbox for scalable outlier detection. arXiv preprint arXiv:1901.01588.
|