- احمدی زاد، آ، ﻋﺒﺎﺳﯽ، ا، رحیمپور، م. (1395). الگوی سنجش هوشمندی کسبوکار در صنعت تلکام. فصلنامه مطالعات مدیریت راهبردی، 7 (28)، 281-267.
- آدینه، م.، حسنزاده، ع.، حسنزاده، م؛ و پور عزت، ع. (1401). واکاوی کارکرد هوشمندی کسبوکار در کتابخانههای دانشگاهی، تحقیقات کتابداری و اطلاعرسانی دانشگاهی، 56(2)؛ 14- 1.
- پوطی، ن، مرادی مخلص، ح، صالحی و حیدری، ج. (1397). مدلی برای انطباق سازمانهای آموزشی با ملزومات هوشمندی کسبوکار. مطالعات مدیریت کسبوکار هوشمند، 6 (23)، 145-175.
- رضایی، ص، میرعابدینی، سج و ابطحی، ع. (1397). عوامل مؤثر بر پیادهسازی هوشمندی کسبوکار در صنعت بانکداری ایران. مطالعات مدیریت کسبوکار هوشمند، 6(23)، 33-81.
- رنگریز، ح، افشاری، ن. (1395). مقایسه دیدگاههای مختلف درباره رابطه هوشمندی کسبوکار و مدیریت دانش. امواج دانش، 1(9)، 0-0.
- رونقی، م و دهقانی، م. (1399). ارائه چارچوب پذیرش گردشگری الکترونیک با استفاده از روش فراترکیب. گردشگری و توسعه، 9(4)، 49-61.
- رونقی، م و رونقی، م. (1393). ارائه مدل بلوغ هوشمندی کسبوکار در بین سازمانهای ایرانی. رشد فناوری، 10(38)، 38-44.
- رئیسیوانانی، ا، گنجعلیخانحاکمی، ف. (1394). طراحی سیستم استنتاج فازی - عصبی انطباقی برای ارزیابی استقرار سیستم هوشمندی کسبوکار در صنعت تولید نرمافزار. مدیریت فناوری اطلاعات، 7(1)، 85-104.
- سعادتی، ز، تارخ، م. (1396). بررسی رویکرد تلفیقی در سیستمهای هوش کسبوکار با تمرکز بر دادهکاوی. سیاستنامه علم و فناوری، 07 (4)، 56-43.
- فلاح، م، کاظمی، ز. (1399). شناسایی پیشرانهای مؤثر بر موفقیت شرکتهای دانشبنیان با تأکید بر نقش هوشمندی کسبوکار. نشریه علمی راهبردهای بازرگانی 16 (14)، 72-57.
- لیلی، آ و رنجبرفرد، م. (1398). مروری بر مدلهای آمادگی هوش کسبوکار. رشد فناوری، 15(60)، 9-17.
- مانیان، ا، رونقی، م. (1394). ارائه چارچوب جامع پیادهسازی بازاریابی اینترنتی با استفاده از روش فراترکیب. مدیریت بازرگانی، 7(4)، 901-920.
- ملایی، ن و طهماسبی، ع. (1398). مدل پلتفرم داده بزرگ و نقش آن در کیفیت داده و هوشمندی کسبوکار. مدیریت بحران، 8 (ویژهنامه)، 61-72.
- منشی، م. (1400). تأثیر هوشمندی کسبوکار بر کارآفرینی سازمانی با نقش میانجی بلوغ مدیریت دانش (موردمطالعه: بانک تجارت استان تهران).مدیریت نوآفرینی، 1 (1)، 79-63.
- Adamik, A., Nowicki, M., & Puksas, A. (2022). Energy Oriented Concepts and Other SMART WORLD Trends as Game Changers of Co-Production—Reality or Future?. Energies, 15(11), 4112.
- Ahmad, S., Miskon, S., Alabdan, R., & Tlili, I. (2020). Towards sustainable textile and apparel industry: Exploring the role of business intelligence systems in the era of industry 4.0. Sustainability, 12(7), 2632.
- Alsibhawi, I. A. A., Yahaya, J. B., & Mohamed, H. B. (2023). Business Intelligence Adoption for Small and Medium Enterprises: Conceptual Framework. Applied Sciences, 13(7), 4121.
- Aparicio, G., Iturralde, T., & Rodríguez, A. V. (2023). Developments in the knowledge-based economy research field: a bibliometric literature review. Management Review Quarterly, 73(1), 317-352.
- Ariyarathna, K., & Peter, S. (2019). Business analytics maturity models: a systematic review of literature. Focus, 3(10), 4-20.
- Arunachalam, D., Kumar, N., & Kawalek, J. P. (2018). Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice. Transportation Research, 114, 416-436.
- Asimakou, T. (2017). Time for innovation: Concurrent and conflicting metaphors of time in a knowledge MNC. Time & Society, 26(1), 113-134.
- Badgujar, A. D., Kadam, S. S., Zambare, M. M., & Kulkarni, S. R. (2022). A comparative study: Business intelligence tools. International Journal of Research in Engineering, Science and Management, 5(1), 116-118.
- Batra, D. (2022). Antecedents of Organizational Agility During Business Uncertainty in Noninformation Technology Sectors. Journal of Database Management (JDM), 33(1), 1-22.
- Benkhider, N., & Meziani, M. (2021). Digital transformation process based-technology infrastructure and employee training evidence from World Bank. Recherchers economiques manageriales, 15(1), 537-552.
- Bhatiasevi, V., & Naglis, M. (2020). Elucidating the determinants of business intelligence adoption and organizational performance. Information development, 36(1), 78-96.
- Brooks, P., El-Gayar, O., & Sarnikar, S. (2015). A framework for developing a domain specific business intelligence maturity model: Application to healthcare. International Journal of Information Management,35(3), 337-345.
- Calitz, A., Bosire, S., & Cullen, M. (2018). The role of business intelligence in sustainability reporting for South African higher education institutions. International Journal of Sustainability in Higher Education,19(7), 1185-1203.
- Canós‐Darós, L. (2013). An algorithm to identify the most motivated employees. Management Decision, 51(4), 813-823.
- Chanda, D. (2019). AI Based Data Architecture Impact Analysis. In Proceedings of 32nd International Conference on (Vol. 63, pp. 53-62).
- Chuah, M. H., & Wong, K. L. (2011). A review of business intelligence and its maturity models. African journal of business management, 5(9), 3424-3428.
- Darwiesh, A., El-Baz, A. H., Tarabia, A. M. K., & Elhoseny, M. (2022). Business Intelligence for Risk Management: A Review. J. Bus. Oper. Res, 6 (1), 16-27.
- Fu, H. P., Chang, T. H., Teng, Y. H., Liu, C. H., & Chuang, H. C. (2022). Critical Factors Considered by Companies to Introduce Business Intelligence Systems. Axioms, 11(7), 338.
- Godlewska, M. (2018). Smart Document-Centric Processing of Human Oriented Information Flows. Computing and Informatics, 37(3), 673-692.
- Golestanizadeh, M., Sarvari, H., Cristofaro, M., & Chan, D. W. (2023). Effect of Applying Business Intelligence on Export Development and Brand Internationalization in Large Industrial Firms. Administrative Sciences, 13(2), 27.
- Gudas, S. (2009). Enterprise knowledge modelling: domains and aspects. Technological and economic development of economy, (2), 281-293.
- Gudfinnsson, K., Strand, M., & Berndtsson, M. (2015). Analyzing business intelligence maturity. Journal of Decision Systems, 24(1), 37-54.
- Halper, F., & Stodder, D. (2014). TDWI analytics maturity model guide. TDWI research, 1-20.
- Harison, E. (2012). Critical success factors of business intelligence system implementations: Evidence from the energy sector. International Journal of Enterprise Information Systems (IJEIS), 8(2), 1-13.
- Hausladen, I., & Schosser, M. (2020). Towards a maturity model for big data analytics in airline network planning. Journal of Air Transport Management,82, 101721.
- Hernández-Julio, Y. F., Hernández-Royett, J., Nieto-Bernal, W., & Romero-Prieto, J. E. (2021). Business intelligence maturity models: opportunities and recomendations for future reinvestigation-A systematic literature review-Part 2. Aglala, 12(1), 95-113.
- Hilbert, M. (2022). Digital technology and social change: the digital transformation of society from a historical perspective. Dialogues in clinical neuroscience, 22 (2) 189-194.
- Jahantigh, F. F., Habibi, A., & Sarafrazi, A. (2019). A conceptual framework for business intelligence critical success factors. International Journal of Business Information Systems, 30(1), 109-123.
- Khrisat, R. M., Khaddam, A. A., & Abusweilem, M. A. (2023). The role of using big data in predicting customer behaviour: the intermediary role of business intelligence in Jordanian telecommunications companies (a field study). International Journal of Business Information Systems, 42(1), 23-42.
- Koolivand, A., Salehi, M., Arabzadeh, M., & Ghodrati, H. (2023). The relationship between knowledge-based economy and fraudulent financial reporting. Journal of Facilities Management, 21(1), 16-29.
- Lasi, H. (2013). Industrial intelligence-a business intelligence-based approach to enhance manufacturing engineering in industrial companies. Procedia CIRP,12, 384-389.
- Lukman, T., Hackney, R., Popovič, A., Jaklič, J., & Irani, Z. (2011). Business intelligence maturity: the economic transitional context within Slovenia. Information Systems Management, 28(3), 211-222.
- Manikam, S., Sahibudin, S., & Kasinathan, V. (2019). Business intelligence addressing service quality for big data analytics in public sector. Indonesian Journal of Electrical Engineering and Computer Science,16(1), 491-499.
- Mbima, D. and Tetteh, F.K. (2023), "Effect of business intelligence on operational performance: the mediating role of supply chain ambidexterity", Modern Supply Chain Research and Applications,5(1)28-49.
- Najmi, M., Sepehri, M., & Hashemi, S. (2010). The evaluation of Business Intelligence maturity level in Iranian banking industry. Industrial Engineering and Engineering Management.466-470.
- Niazi, H. (2019). Strategy, Action Plan, and Approaches for Business Intelligence in Banking and Mining. In Applying Business Intelligence Initiatives.305-325.
- Olszak, C. M. (2016). Toward better understanding and use of business intelligence in organizations. Information systems management,33(2),105-123.
- Parra, X., Tort-Martorell, X., Alvarez-Gomez, F.,& Ruiz-Viñals,C. (2022). Chronological Evolution of the Information-Driven Decision-Making Process. Journal of the Knowledge Economy, 1-32.
- Passlick, J., Grützner, L., Schulz, M., & Breitner, M. H. (2023). Self-service business intelligence and analytics application scenarios: A taxonomy for differentiation. Information Systems and e-Business Management,21(1),159-191.
- Powell, A. (2017). CABI's innovative use of technology, data, and knowledge transfer to reduce crop losses in the developing world. Food and Energy Security,6(3),94-97.
- Prieto Morales, R., Meneses Villegas, C., & Vega Zepeda, V. (2015). Análisis comparativo de modelos de madurez en inteligencia de negocio. Revista chilena de ingeniería,23(3),361-371.
- Ragazou, K., Passas, I., Garefalakis, A., & Zopounidis, C. (2023). Business intelligence model empowering SMEs to make better decisions and enhance their competitive advantage. Discover Analytics,1(1),2.
- Ramos, C. M. (2022). Business Intelligence Approach and Sentiment Analysis as a Management Strategy Applied to Study Customer Satisfaction in the Hospitality Sector. In Advances in Tourism, Technology and Systems,2(1), 537-547.
- Ronaghi, M. H., & Feizi, K. (2013). The relationship between work ethics and intelligence among employees of international organizations in Iran. Journal of Ethics in Science and Technology, 8(2), 1-11.
- Sadiq-Bamgbopa, Y. S., Hinmikaiye, A., Aladenika, B., & Adewale, A. (2022). The Connection between Manpower Development, Business Process Performance and Business Intelligence Maturity in Nigeria.
- Sandelowski, M., & Barroso, J. (2003). Toward a metasynthesis of qualitative findings on motherhood in HIV‐positive women. Research in nursing & health, 26(2),153-170.
- Sinarasri, A., & Chariri, A. (2023). Business intelligence, management control systems and startup performance: Empirical study from Indonesia. International Journal of Applied Economics, Finance and Accounting, 16(2), 234-247.
- Skyrius, R., & Skyrius, R. (2021). Business intelligence technologies. Business Intelligence: A Comprehensive Approach to Information Needs, Technologies and Culture, 145-185.
- Srivastava, G., Venkataraman, R., & V, K. (2022). A review of the state of the art in business intelligence software. Enterprise Information Systems, 16(1), 1-28.
- Staniewski, M. (2008). The elements of Human Resources Management supporting knowledge management. Amfiteatru Economic, Special, Noiembrie, 283-291.
- Sushil, S. (2012). Interpreting the interpretive structural model. Global Journal of Flexible Systems Management, 13(2), 87-106.
- Thamir, A., & Theodoulidis, B. (2013). Business intelligence maturity models: Information management perspective. In Information and Software Technologies,198-221.
- Zimmer, L. (2006). Qualitative meta‐synthesis: a question of dialoguing with texts. Journal of advanced nursing, 53(3), 311-318.
|