[1] S.L. Brunton, J.N. Kutz, Data-driven science and engineering: Machine learning, dynamical systems, and control, Cambridge University Press, 2022.
[2] F.A. Gers, J. Schmidhuber, F. Cummins, Learning to forget: Continual prediction with
LSTM, Neural Comput. 12 (2000), PP. 2451–2471.
[3] G. Golub, W. Kahan, Calculating the singular values and pseudo-inverse of a matrix,
Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis
2(2) (1965), PP. 205–224.
[4] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.
[5] H.S. DiStefano, Predicting long-term US housing price trends using a long short-term
memory neural network, Ph.D. Thesis, University of California, Los Angeles, 2022.
[6] A. Graves, Long short-term memory, Supervised sequence labelling with recurrent neural
networks, Stud. Comput. Intell. 385 (2012), PP. 37–45.
[7] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9(8) (1997),
PP. 1735–1780.
[8] J.N. Juang, R.S. Pappa, An eigensystem realization algorithm for modal parameter identification and model reduction, J. Guid. Control Dyn. 8(5) (1985), PP. 620–627.
[9] B.O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad.
Sci. USA 17 (1931), PP. 315–318.
[10] J.N. Kutz, S.L. Brunton, B.W. Brunton, J.L. Proctor, Dynamic mode decomposition:
data-driven modeling of complex systems, SIAM, 2016.
[11] J. Mann, J.N. Kutz, Dynamic mode decomposition for financial trading strategies, Quant.
Finance 16 (2016), PP. 1643–1655.
[12] M. Paluszek, S. Thomas, Practical matlab deep learning, A Project-Based Approach, Apress
Berkeley, CA, 2020.
[13] P.J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid
Mech. 656 (2010), PP. 5–28.
[14] P.J. Schmid, J. Sesterhenn, Dynamic mode decomposition of numerical and experimental
data, In Bull. Amer. Phys. Soc., 61st APS meeting, p. 208. San Antonio, 2008.
[15] S. Siami Namini, A. Siami Namini, Forecasting economics and financial time series: ARIMA
vs. LSTM, arXiv:1803.06386 (2018).
[16] J.H. Tu, Dynamic mode decomposition: Theory and applications, Ph.D. Thesis, Princeton
University, 2013.
[17] J.H. Tu, C.W. Rowley, D.M. Luchtenburg, S. L. Brunton, J.N. Kutz, On dynamic
mode decomposition: Theory and applications, Journal of Computational Dynamics 1 (2014),
PP. 391–421.
[18] S. Yao, L. Luo, H. Peng, High-frequency stock trend forecast using LSTM model, 13th
International Conference on Computer Science & Education (ICCSE), IEEE, (2018), PP.
1–4.