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Abstract:
An online portfolio selection algorithm has been presented in this research.
Online portfolio selection algorithms are concerned with capital allocation
to several stocks to maximize the portfolio return over the long run by de-
ciding the optimal portfolio in each period. Despite other online portfolio
selection algorithms that follow Kelly’s theory of capital growth and only
focus on increasing return in the long term, this algorithm uses the beta
risk parameter to exploit upside risk while hedging downside risk. This
algorithm follows the pattern-matching approach, uses fuzzy clustering in
the sample selection step, and the log-optimal objective function along with
the transaction cost and considering the beta risk measure in the portfolio
optimization step. The implementation of the proposed algorithm in this
research on a 10-stock dataset from the NYSE market in the period of
December 2021 to December 2022 shows the superiority of this algorithm
in terms of return and risk and the overall Sharpe ratio compared to the
algorithms proposed previously in the literature on online portfolio selec-
tion.
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1 Introduction

The use of algorithmic trading techniques has increased in recent years due to

the growth of the volume, and the rate of transactions, and the amount of data

to make decisions about portfolio selection. Online portfolio selection is one of

the algorithmic trading issues, which allocates capital among several stocks and
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updates the stocks weight in each period to maximize the portfolio return over the

long run.

There are two major theories in the literature on portfolio selection models. The

Markowitz theory [13] is concerned with balancing expected returns (mean) and

risk (variance) and is suitable for single-period decisions. In contrast, Kelly’s the-

ory [3], which is known as the capital growth theory, is concerned with maximizing

the expected log returns and is more suited to multi-period decision-making. As

the decision-making in online portfolio selection approaches is performed for several

consecutive periods, Kelly’s capital growth theory is conventionally used in mod-

eling these algorithms. The nature of algorithms based on Kelly’s theory is such

that the focus is on increasing portfolio returns in the long term, which may lead

to an increase in investment risk.

As yet, three main approaches of follow the winner, follow the loser, and pattern

matching have been mentioned in the literature on online portfolio selection [11].

The results of the studies in online portfolio selection suggest that the pattern-

matching approaches, which form the portfolio based on similar historical patterns,

have empirically been revealed to be better than other approaches [11]. Pattern

matching algorithms include the two steps of sample selection and portfolio op-

timization. In order to select the sample, the recent data is compared with the

historical data, and the historical data that resemble the recent data are identified

as the selected sample. In the next step, the optimal portfolio is selected based on

the selected sample.

Every investor has two essential criteria for portfolio selection. First, obtain-

ing the maximum return and, at the same time, facing the lowest possible risk.

Therefore, portfolio selection models seek to maximize returns and minimize risk

to obtain the best results according to these criteria. For this purpose, it is nec-

essary to use relevant risk measures in modeling. Considering that the emphasis

of the online portfolio selection models is on maximizing investment return in the

long term, the investment risk in these models has been given less attention.

The algorithm proposed in this research is an online portfolio selection algorithm

following the pattern-matching principle. This algorithm employs fuzzy clustering

techniques to find historical patterns similar to the recent pattern and decide the

optimal portfolio every day accordingly. The notable point in this research is the

use of the beta risk measure in the portfolio selection model in order to exploit the

risk measure to obtain the maximum benefit.

The background and research literature on the pattern-matching principle has

been presented in section 2. Section 3 is concerned with the parameters, formu-

lation, and issues related to clustering and the use of the risk measure. Section

4 introduces the process of the proposed algorithm. Section 5 is concerned with

the application of the proposed algorithm on real data and its evaluation and com-

parison with the results of the previous algorithms introduced in the literature.

Eventually, Section 6 presents conclusions and suggestions for future research.
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2 Research Background

The pattern matching principle is one of the basic principles in the literature on

online portfolio selection. This principle is concerned with using historical data to

make decisions regarding the portfolio in the following period. This approach seeks

historical patterns similar to the recent one. Pattern-matching algorithms have

been empirically proven to yield the most significant capital growth compared to

other online portfolio selection approaches. Usually, pattern-matching algorithms

consist of two steps [11].

Step one, Sample Selection: In this step, the purpose is to find the set C. Set C

is the set of price-relative vectors of historical days that are expected to have the

same behavior as the following day. Then, each index is assigned a probability Pi,

which is usually concerned with the degree of similarity.

Step two, Portfolio Optimization: In this step, an optimal portfolio is selected

based on the price vector of similar days obtained in the first step, as follows.

b(t+1) = arg max
b∈∆m

U(b;C) (1)

Where U(b;C) indicates the utility function of b, under the set C. While there

is no similar day to the recent day, the uniform portfolio is chosen as the optimal

portfolio.

Pattern-matching algorithms seek to find price-relative vectors similar to the

price-relative vector of the following day. To this end, the similarity between the

recent time window and historical time windows is calculated, and the behavior of

the price-relative vector of the day following similar time windows is expected to

be similar to the price-relative vector of the following day, the optimal portfolio of

which is to be calculated. After identifying the similar price-relative vectors, the

optimal portfolio for the following period is selected accordingly.

The BH strategy, which is a combination of two steps, employing the histogram

method in the first step and log-optimal in the second, was proposed by Györfi and

Schäfer [7]. Györfi et al. [6] introduced BK a combination of the two methods of Ker-

nel in the first and log-optimal in the second step. Also, Györfi et al. [13] presented

the BNN strategy, which is a combination of the nearest neighbor in the first step

and the log-optimal in the second step. The CORN strategy, a combination of the

correlation method in the first and log-optimal in the second step was presented

by Li et al. [10]. They proved to have empirically better performance than the

three other algorithms mentioned earlier. Moreover, Györfi et al. [5] proposed the

BS strategy using semi-log-optimal to simplify BK calculations. The BM strategy

a combination of the kernel method in the first and the Markowitz method in the

second step- to employ Markowitz’s theory and consider the balance between mean

(return) and variance (risk) was presented by Ottucsák and Vajda [15]. Györfi and

Vajda [6] also introduced the BGV strategy to include the transaction cost in the

calculations. Loonat and Gebbie [12] proposed learning zero-cost portfolio selection
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with pattern matching. A risk-aversion pattern matching-based portfolio selection,

RACORN-K was presented by Wang et al. [17]. Sooklal et al. [16] proposed a mod-

ified Corn-K algorithm as DRICORN-K, which is a dynamic risk correlation-driven

non-parametric algorithm.

In the sample selection step, pattern-matching algorithms seek for days similar to

the following day by detecting time windows similar to the recent one. Clustering

algorithms allow for all data to be sifted together, while the presented pattern-

matching algorithms consider various distance criteria such as correlation and Eu-

clidean distance to compare historical time windows to the recent one rather than

comparing all data simultaneously. In this regard, Abdi and Najafi [4] introduced

the spectral pattern-matching algorithm through spectral clustering in the sample

selection step and log-optimal in the portfolio optimization step. Khedmati and

Azin [9] also developed this model and used the four clustering algorithms of K-

medoids, K-means, hierarchical clustering, and spectral clustering while including

transaction costs in the model. Abdi et al. [5] presented an online portfolio selection

algorithm based on the pattern-matching principle and using fuzzy clustering.

3 Theoretical Basis

In this section, the theoretical principles of the research, including the formulation

of the problem and the items used in each step of the algorithm, are explained [11].

3.1 Formulation

Consider an investor who decides to invest the capital in a number of stocks (m ≥ 2)

for n trading periods (n ≥ 1). The close price of m stocks in each time period t

is shown by the vector pt = (p1,t, p2,t, , pi,t, , pm,t). Also, the market price change

is represented by an m-dimensional price-relative vector xt, where each element is

calculated by xt.i =
pt.i

pt−1.i
and shows the return of the ith stock in period t. Thus,

an investment in asset i on period t increases by a factor of xt.i. In this regard,

xn
1 = {x1, , xn} is a sequence of price-relative vectors for n trading periods, which

actually form an n∗m matrix, where the n index indicates the trading periods and

the m index indicates the stocks. Also, the time-window of price-relative vectors

between period s to t is shown as xe
s = {xs, , xe}, 1 ≤ s < e ≤ n.

At the beginning of the tth period, the proportion of capital invested in m stocks,

is specified by a portfolio vector bt = (bt,1, , bt,m) where all the components are

positive and also Σm
i=1bt.i = 1, ∀t.

Investment ratios at the beginning of the tth period are computed by observing

the past behavior of the market, i.e. the price-relative vectors from the first period

to the period before t, and are shown as bt = bt(X
t−1
1 ). So, bn1 = {b1, , bn} is the

portfolio strategy for n periods, and also is an output of an online portfolio selection

algorithm.
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At the end of period t, by choosing the portfolio bt for this period, a return of

St which is calculated by St = b⊺t xt = Σm
i=1bt.ixt.i has been achieved. Since this

model reinvests the capital, the portfolio wealth will increase multiplicatively.

From period 1 to n, a portfolio strategy bn1 increases the initial wealth S0 by a

factor of Πn
t=1b

⊺
t xt, that is, the final cumulative wealth after a sequence of n periods

is calculated as follows.

Sn(b
n
1 .x

n
1 ) = S0

n∏
t=1

b⊺t xt = S0

n∏
t=1

m∑
i=1

bt.ixt.i (2)

Since the model assumes multi-period investment, the exponential growth rate

for a strategy bn1 is defined as follows.

Wn(b
n
1 ) =

1

n
logSn(b

n
1 ) =

1

n

n∑
t=1

log b⊺t xt (3)

In most of the online portfolio selection algorithms, the goal is maximizing Sn.

At the beginning of tth period, based on the previous market window Xt−1
1 , the

investor designs the portfolio bt for the following trading period. At the end of

the period, the return of the selected portfolio is equal to bt.xt. This procedure

is repeated until nth period, and the strategy is finally scored according to the

portfolio cumulative wealth Sn.

3.2 Clustering

The aim of clustering is to discover natural groups within data. A cluster refers to

a set of data sharing common features. Clustering seeks to find structure within an

unclassified dataset by placing data in groups so that the data in a group are signif-

icantly more similar to the data in their cluster from specific features compared to

data in other clusters. Distance is the similarity criterion in clustering, representing

heterogeneity, and helps move through the data space. Whether two data can be

placed in the same cluster is indicated by calculating the distance between them

and their proximity. Clustering is a way of unsupervised data mining, meaning

that no initial labeling has been performed on the information.

Fuzzy C-Means clustering is the developed form of the K-Means method. As

a similar logic in K-Means, first, a center for each cluster is set in the C-Means

method, and the data are clustered based on their distance from the center. Fuzzy

clustering allows each data to belong to several clusters with specific membership

levels.

3.3 Risk Measure in Portfolio Optimization

As yet, in some algorithms based on the pattern-matching approach, the risk mea-

sure has been considered in the portfolio optimization step. Wang et al. [17] and
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later Sooklal et al. [16] proposed online risk-averse portfolio selection algorithms

based on the CORN algorithm, named RACORN and DRICORN, respectively.

The DRICORN algorithm has been exploiting upside risk while hedging downside

risk. For this purpose, the beta (β) risk measure, which shows the sensitivity of

each share or portfolio to the changes in the overall market, has been used. In this

regard, when the market is expected to be bearish, a penalty is considered for the

portfolio or stock with a high beta value to reduce the risk of portfolio depreciation,

and vice versa when the market is expected to be bullish, a bonus is considered

for the portfolio or stock with a high beta value to get maximum returns from

positive market changes. Two challenging issues in this algorithm are measuring

the sensitivity of stocks or portfolios to market changes and predicting whether the

market will be bullish or bearish.

For every stock i, β is calculated as follows.

βi =
cov(Ri, Rm)

var(Rm)
(4)

Where Ri and Rm are the daily returns on stock i and the market index respec-

tively.

Thus, it can be interpreted that the β has the same behavior as the regression

coefficient in the linear regression model, and it actually indicates the magnitude

and direction of changes in the return of the share or portfolio in comparison with

market changes.

Also, the β for a portfolio with m stocks, is calculated as follows.

βp =

m∑
i=1

wi.βi (5)

Where wi represents the weight of stock i in the portfolio.

In this algorithm, β has been incorporated by extending the objective function

of the online portfolio selection model based on the market condition as follows.

εt(ω, ρ, λ) = arg max
b∈∆m

∏
i∈Ct(ω,ρ)

(b.xi)± λβb (6)

Where λ is the beta coefficient as a hyperparameter.

In fact, when a bullish market is expected, the λβb is added to the model and

when a bearish market is expected, it will be subtracted from the model in order

to obtain the maximum profit from market changes.

In the next step, it is necessary to predict the market condition for the deci-

sion period that, according to the data classification, the market will be bullish or

bearish in the future.

Seven methods for classifying data and predicting the market condition have

been presented, which are divided into three general categories: pure price changes,

current vs. lagged moving average analysis on cumulative returns, and moving
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linear regression analysis on price relative vectors. According to the investigation,

the results of the moving linear regression method have been more consistent with

reality compared to other methods.

4 The Proposed Algorithm

In this research, an online portfolio selection algorithm has been presented based

on the pattern-matching principle. It makes decisions regarding the weight of each

stock and performs buys and sales at the beginning of every period. The main

output of the algorithm is the total return by the end of the final investment

period.

The proposed algorithm is a risk-averse extension of the FCM-Log algorithm [5],

which exploits upside risk while hedging downside risk. For this purpose, the beta

risk measure has been used in portfolio optimization step.The beta risk measure

estimates the portfolio sensitivity to the market. Hence, the proposed objective

function in portfolio optimization step rewards high-beta stocks in bullish market,

while penalises them in bearish market.

In order to evaluating the performance of the proposed algorithm, the closing

price of the 10 most active stocks from the New York Stock Exchange, containing

TAL, ET, ITUB, SWN, RIG, VALE, OXY, XOM, F , and BAC in the period from

the beginning of December 2021 to the beginning of December 2022 have been

extracted. 25% of the data was selected to test the algorithm, and the buy and sell

transaction cost was assumed to be zero and 0.02, respectively.

Like all other pattern-matching algorithms, the presented algorithm is composed

of the two steps of sample selection and portfolio optimization. The sample selec-

tion step deals with searching historical data for time windows that have behaved

similarly to the recent time window.

In this regard, the price data matrix of P is entered into the model, and the

price-relative matrix of X is developed by the model, which actually shows the

return of each stock on each day. Then, considering the train ratio as the input of

the model, the training and test data are separated, and based on the size of the

time window (TW ), the training matrix is split into sub-matrices with the size of

TW .

In fact, the sub-matrices are formed in order to cluster and find sub-matrices

with the same cluster as the recent sub-matrix. Considering that the input of the

clustering algorithms is vectors, the sub-matrices created in the previous step are

unwrapped and turned into a vector. In order to cluster the created vectors, a

fuzzy clustering algorithm using Euclidean distance has been employed. Also, the

number of optimal clusters is determined according to the number of clusters that

result in the lowest value of the objective function in the clustering model.

The sub-matrices, placed into the same cluster with the recent sub-matrix, are re-

garded as similar to the recent sub-matrix, and the day after each similar sub-matrix
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is saved as the similar day in the matrix called matrix C. Next, the Euclidean dis-

tance of similar sub-matrices with the recent sub-matrix is calculated and a weight

is assigned to each sub-matrix according to the distance. These weights are saved

in a column vector W .

After finding the similar days and the weight assigned to each in the first step,

the optimal portfolio of the following day is calculated in the second step according

to the price-relative matrix of similar days and the corresponding weight vector.

In this step, according to whether the decision is related to the first day or other

days, and also considering whether a similar day or days have been found in the

first step, the following different situations are considered:

1. If no similar days have been found in the first step (C is null) and a decision is

made regarding the first day, a uniform portfolio is chosen as the optimal portfolio.

2. If no similar days have been found in the first step (C is null) and a decision

is made on a day other than the first day, no change is made to the previous day’s

portfolio. It means that no transaction is set to be made, and the optimal portfolio

for the following day would be the adjusted portfolio at the end of the previous

day.

3. If similar day(s) have been found in the first step (C is not null), the optimal

portfolio for the following day is calculated by solving the following optimization

model.

maxZ = E{log (b⊙ (1− TC)).x | xj , j ∈ C(xt
1)} ± λβp

=
∑

j∈C(xt
1)

wj log (b⊙ (1− TC)).cj ± λ

m∑
i=1

wiβi

(7)

s.t.

m∑
i=1

bi = 1

l ≤ bi ≤ u, ∀i

In the above objective function, which is a log-optimal, the matrix C and the

vector W are obtained from the first step, representing the price-relative matrix

and the weight vector of similar days, respectively. TC is the vector of transaction

cost rate, which is obtained as follows.

TC =| γ | ⊙ τ

γ = Badj(t− 1)− b (8)

τ =


TC Buy, γ < 0

TC Sell, γ > 0

0, γ = 0
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Also, βp is incorporated into the model as a portfolio beta, along with the λ

coefficient as a hyper-parameter. The λβb term is added to the above model when

the market is expected to be bullish and subtracted when the market is expected

to be bearish to gain the maximum profit from market changes. In order to predict

the market condition, a uniform, and exponential weighted moving linear regres-

sion is calculated on the data of the studied market index. Because of the higher

importance of recent data, in the exponential weighted method, higher weight is

given to the recent data. If the slope of the calculated regression is positive, the

term λβb will be added to the model, and if the slope is negative the term λβb will

be subtracted from the model.

By optimizing the above model, the value of b∗ is obtained, which is the optimal

portfolio for the following day.

Adjusted portfolio (Badj). As the price of each stock in the portfolio has been

changed during the day, the weight of each one in the portfolio will change without

making any transactions. This new weight at the end of the day is called the

adjusted portfolio. The adjusted portfolio is obtained as follows.

Badj(t) =
B∗(t)⊙ x(t)

B∗(t)x(t)
(9)

It is worth mentioning that the size of the time window used in the algorithm

is not predetermined, and the algorithm modifies the optimal time window size in

each run according to the results of the optimization model in the previous periods.

As the next day passes and the price data of the market is revealed on that

day, the return resulting from the decision for that day is determined, the current

period is transferred to the training matrix, and this process is repeated until the

end of the investment period. At the end, the evaluation criteria of the model are

calculated.

In this research and according to the described algorithm, two algorithms of

FCM-DRLog(UW) and FCM-DRLog(EW) have been presented. In these algo-

rithms, uniform and exponential-weighted moving linear regression have been used,

respectively, in order to predict whether the market will be bullish or bearish.

5 Results

In this section, the results of the proposed algorithm for real data and its results

compared to other algorithms proposed in the literature so far, have been presented.

For this purpose, the data and assumptions in Abdi et al. [5] have been used to

implement the proposed algorithm. Also, in this study, the rate of treasury bonds

is assumed to be 2.5% in order to calculate the annual Sharpe ratio.

In addition to the mentioned parameters that are similar to the past algorithms,

some specific parameters of the proposed algorithm are assumed as follows:

• In calculating the portfolios beta, the data related to the NYSE Composite
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FCM-DRLog(EW) FCM-DRLog(UW)

Total Cumulative Return (Sn) 1.28 1.27

Annual Percentage Yield (APY) 1.70 1.60

Annual Standard Deviation of Returns 0.45 0.53

Annual Sharpe Ratio (SR) 3.72 2.95

Table 1: The results of the proposed algorithm

(NYA) index has been used as the market index.

• The time period to calculate the linear regression on the NYSE Composite

(NYA) index data has been considered 60 days.

• In weighted linear regression, exponential weighting is used so that the weight

of recent data is greater than that of historical data.

• The value of λ, as the beta coefficient in the model, is assumed to be 0.001.

As shown in Table 1 , the total cumulative return of the portfolio (Sn) for the

FCM-DRLog(EW) algorithm is equal to 1.28, and for the FCM-DRLog(UW) algo-

rithm is equal to 1.27. Also, the annual percentage yield in the FCM-DRLog(EW)

and FCM-DRLog(UW) algorithms is equal to 170% and 160% respectively.

Figure 1 and Figure 2 show the daily return and the daily cumulative return

trend of the FCM-DRLog(UW) and FCM-DRLog(EW) algorithms respectively.

As mentioned in Table 1 , the annual standard deviation of returns of the port-

folio is calculated as 0.45 in the FCM-DRLog(EW) algorithm and 0.53 in the

FCM-DRLog(UW) algorithm. Additionally, the annual Sharpe ratio for the FCM-

DRLog(EW) algorithm is 3.72, and for the FCM-DRLog(UW) algorithm is 2.95.

Considering that the proposed algorithm follows the pattern-matching principle,

the results of the current algorithm are compared with other algorithms presented

in the literature and benchmark algorithms to show the improvement in the results

compared to previous ones. The comparison is presented in Table 2 and also shown

graphically in Figure 3.

According to the results of previous algorithms in the literature in the total cu-

mulative return of the portfolio (Sn), which are shown in Table 2 , the proposed

algorithm has been outperformed, and the algorithms return is close to the bench-

mark algorithm, BCRP.

According to the APY criterion, which represents the annual percentage yield, if

the algorithm has a continuous performance, the APY of the proposed algorithms

will be higher than the previous algorithms.

Also, the annual standard deviation of returns of the portfolio for proposed

algorithm, as a measure of risk, is lower than the benchmark algorithm, BCRP.

One of the most important criteria for evaluating models is the annual Sharpe

ratio, which indicates the excess return of the risk-free return with regard to the
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Figure 1: The daily return and the daily cumulative return trend of the FCM-
DRLog(UW) algorithm

Figure 2: The daily return and the daily cumulative return trend of the FCM-
DRLog(EW) algorithm

Presented algorithm Benchmark Pattern-Matching algorithms

FCM-DRLog(EW) FCM-DRLog(UW) BCRP Uniform-BAH FCM-Log BK BNN Corn-U Corn-K

Total Cumulative Return 1.28 1.27 1.33 1.07 1.25 1.01 1.01 0.94 0.99

Annual Percentage Yield 1.70 1.60 2.11 0.32 1.45 0.04 0.04 -0.20 -0.05

Annual Standard Deviation of Returns 0.45 0.53 0.56 0.34 0.56 0.38 0.42 0.49 0.42

Annual Sharpe Ratio 3.72 2.95 3.71 0.86 2.54 0.04 0.03 -0.46 -0.17

Table 2: The results of the proposed algorithm and the comparison with previous
ones in the literature
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Figure 3: The daily cumulative return trend of the proposed algorithms existing
ones in the literature

tolerated risk. The higher the value of the annual Sharpe ratio of the algorithm, the

higher the return obtained compared to the tolerated risk. The proposed algorithm

has the highest Sharpe ratio compared to other algorithms in the literature, and it

is almost equal to the Sharpe ratio of the benchmark algorithm, BCRP.

6 Conclusions and Grounds for Future Research

In this research, an online portfolio selection algorithm has been presented based

on the pattern-matching principle. This algorithm calculates the optimal portfolio

for each day by using two steps: sample selection and portfolio optimization. In

the first step, historical data is separated into time windows, and a fuzzy clustering

algorithm is implemented in order to find similar days. In this regard, the time

windows of the same cluster with the recent time window are considered similar,

and the following days will be considered as days similar to the day set to be

decided upon. In the second step, in order to optimize the portfolio, the log-optimal

objective function has been used, taking into account the transaction cost and

considering the beta risk measure. According to the bullish or bearish prediction

of the market on the day of the decision, the beta risk measure is used in such a

way that in the bullish market, the goal is to maximize the beta of the portfolio,

and in the bearish market the goal is to minimize the portfolio beta so that the

maximum return can be obtained in this way. In fact, in this research, the goal is

to use the beta risk measure optimally in order to obtain maximum return.
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In order to implement the algorithm, the New York Stock Exchange market

data was used for 10 most active market stocks in the period from the beginning of

December 2021 to the beginning of December 2022. According to the comparison

of the proposed algorithm with other algorithms in the literature, the proposed

algorithm has a better performance in terms of return, risk, and risk-adjusted

return compared to the previous algorithms.

In order to provide suggestions for future research, considering other risk mea-

sures and minimizing them in the model can be used as a basis for future research.

Also, considering stock liquidity in the model will lead to more realistic results.

Using other data mining methods or considering other parameters in order to find

similar data in the first step can also lead to higher efficiency.
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