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Abstract:
This article proposes a new numerical technique for pricing asset-or-nothing
options using the Black-Scholes partial differential equation (PDE). We first
use the θ−weighted method to discretize the time domain, and then use
Haar wavelets to approximate the functions and derivatives with respect
to the asset price variable. By using some vector and matrix calculations,
we reduce the PDE to a system of linear equations that can be solved at
each time step for different asset prices. We perform an error analysis to
show the convergence of our technique. We also provide some numerical
examples to compare our technique with some existing methods and to
demonstrate its efficiency and accuracy.
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1 Introduction

Haar wavelets, a class of mathematical functions, present a valuable approach for

approximating solutions to partial differential equations (PDEs). Their utilization

offers distinct advantages over alternative methods, characterized by traits such as

simplicity, orthogonality, and sparsity. Notably, Haar wavelets exhibit versatility

in handling diverse boundary conditions and nonlinearities inherent in PDEs. The

subsequent dilations and translations of this core wavelet function establish a basis

within the realm of square-integrable functions. Consequently, any function within

this space can be represented as a linear combination of Haar wavelets. In the con-

text of employing Haar wavelets for the resolution of partial differential equations

(PDEs), a fundamental methodology involves employing the Haar wavelet expan-

sion on the unknown function and its derivatives. Subsequently, these expansions
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are integrated into the PDE, thereby converting it into a set of algebraic equations.

These equations can then be effectively addressed through a range of numerical tech-

niques. Alternatively, one may opt to utilize the Haar wavelet operational matrix,

a structured matrix that characterizes the impact of a differential operator on a

Haar wavelet function. Through the multiplication of this operational matrix with

the vector containing Haar wavelet coefficients, one can derive the Haar wavelet

coefficients corresponding to the function’s derivative. This streamlined approach

significantly facilitates the PDE solution process.

Haar wavelets have been applied to solve various types of PDEs, such as elliptic,

parabolic, hyperbolic, and fractional PDEs [11]. Some examples of PDEs that

have been solved by Haar wavelets are the Poisson equation [10], the heat equation

[3, 16], the wave equation [14], the Burgers equation [8, 13, 20], the Lane-Emden

equation [11], and the Black-Scholes equation [9,18]. Haar wavelets have also been

combined with other techniques, such as variational iteration [12, 21], homotopy

perturbation [6], quasi-linearization [15, 19], and collocation [1, 2], to enhance the

accuracy and efficiency of the solutions. These functions are utilized to deal with

asset-or-nothing option pricing problems, which are considered one of the most

intriguing challenges in financial mathematics.

2 Options and Black-Scholes Model

Options are financial instruments that grant their holders the privilege, without im-

posing a duty, to purchase (call option) or sell (put option) a designated underlying

asset, such as stocks, commodities, or currencies, at a predefined price (strike price)

during a specified timeframe (expiration date). Options are extensively utilized in

financial markets and serve multiple crucial purposes.

Hedging is a key application of options, mostly used for risk management pur-

poses. Options can be utilized by investors and corporations as a means of safe-

guarding their portfolios or assets against unfavorable price fluctuations.

Numerous traders employ options for speculative endeavors. If individuals an-

ticipate an increase in the price of the underlying asset, they may elect to purchase

call options. Conversely, if they anticipate a decrease in price, they may choose to

purchase put options. Speculation in this context enables traders to generate prof-

its from price fluctuations without possessing the underlying asset, hence offering

the advantages of leverage and the potential for increased returns.

Utilizing options can enhance the diversification of investment portfolios. By

incorporating more choices into a collection of conventional assets, investors can

augment risk-adjusted returns and diminish the overall risk of their portfolio.

Options are frequently employed in the commodities market to mitigate the

risk associated with price volatility. Producers and customers can utilize options to

establish fixed prices for future deliveries, guaranteeing consistency in their financial

planning and business activities.
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2.1 Vanilla options

Vanilla options are a type of options that give the buyer or seller the right, but

not the obligation, to buy or sell an underlying asset at a predetermined price and

time. Vanilla options are simple and standard, and they do not have any special

or unusual features. They are traded on exchanges, such as the Chicago Board

Options Exchange1.

There are two kinds of vanilla options: call options and put options. A call

option gives the buyer the right to buy the underlying asset at the strike price

before or on the expiration date. A put option gives the buyer the right to sell

the underlying asset at the strike price before or on the expiration date. The seller

of the option, also known as the writer, has the obligation to deliver or buy the

underlying asset if the buyer exercises the option.

The price of a vanilla option, also known as the premium, depends on several

factors, such as the current price of the underlying asset, the strike price, the time to

expiration, the volatility of the underlying asset, the interest rate, and the dividend

yield. The premium is paid by the buyer to the seller when the option is purchased.

The profit or loss of a vanilla option depends on whether the option is in the

money, at the money, or out of the money at expiration. An option is in the money

if the exercise of the option results in a positive payoff. For example, a call option

is in the money if the underlying asset price is higher than the strike price. An

option is at the money if the exercise of the option results in a zero payoff. For

example, a call option is at the money if the underlying asset price is equal to the

strike price. An option is out of the money if the exercise of the option results in

a negative payoff. For example, a call option is out of the money if the underlying

asset price is lower than the strike price.

Vanilla options are used for various purposes, such as hedging, speculation, and

arbitrage. Hedging is the use of options to reduce the risk of adverse price move-

ments in the underlying asset. Speculation is the use of options to profit from the

expected price movements in the underlying asset. Arbitrage is the use of options

to exploit the price differences between the option and the underlying asset or other

related instruments.

2.2 Black-Scholes Model

The Black-Scholes model [5] is a mathematical equation that estimates the theoret-

ical value of options contracts based on current stock prices, expected dividends,

strike price, risk-free rate, and volatility. Scholes and Merton won the 1997 Nobel

Memorial Prize in Economic Sciences for discovering ”a new method to determine

the value of derivatives.” Black died two years previously, so he could not receive a

Nobel Prize, but the committee recognized his work in the Black-Scholes model.

The Black-Scholes model requires five input variables: the strike price of an

option, the current stock price, the time to expiration, the risk-free rate, and the



22 Journal of Mathematics and Modeling in Finance

volatility. The model then calculates the price of a call option or a put option using

a formula that involves these variables and some mathematical constants. The

formula is known as the Black-Scholes formula.

In deriving this formula for the value of an option in terms of the price of

the stock, they assumed ideal conditions in the market for the stock and for the

option [5]:

(a) The short-term interest rate is known and is constant through time.

(b) The stock price follows a random walk in continuous time with a variance rate

proportional to the square of the stock price. Thus the distribution of possible

stock prices at the end of any finite interval is lognormal. The variance rate

of the return on the stock is constant.

(c) The stock pays no dividends or other distributions.

(d) The option is European, that is, it can only be exercised at maturity.

(e) There are no transaction costs in buying or selling the stock or the option.

(f) It is possible to borrow any fraction of the price of a security to buy it or to

hold it, at the short-term interest rate.

(g) There are no penalties to short selling. A seller who does not own a security

will simply accept the price of the security from a buyer, and will agree to

settle with the buyer on some future date by paying him an amount equal to

the price of the security on that date.

In the subsequent subsections, we assume that the stock price adheres to a

geometric Brownian motion with a consistent drift (µ) and volatility (σ).

dS(t) = µS(t)dτ + σdW (t), (1)

which W (t) is a Brownian motion. Let V (t, S) denote the value of the option at

time t, if the stock price at that time is S(t) = S. The following equation can be

deduced using Itö lemma and the Doeblin formula, as well as the application of the

delta hedging rule [17]

Vt(t, S) + rSVS(t, S) +
1

2
σ2S2VSS(t, S)− rV (t, S) = 0, t ∈ [0, T ], S ≥ 0, (2)

with the following terminal condition

V (T, S) = f(S), (3)

V (t, 0) = g(t), t ∈ [0, T ], (4)

lim
S→∞

V (t, S) = h(t), (5)

which is a partial differential equation of the type called backward parabolic.
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2.3 Asset-or-Nothing Option

Asset-or-nothing options are a type of binary or digital options that pay a fixed

amount of the underlying asset or nothing at all, depending on whether the asset

price is above or below a certain strike price at expiration. They are different from

regular options, which pay the difference between the asset price and the strike price,

and from cash-or-nothing options, which pay a fixed amount of cash or nothing at

all.

Asset-or-nothing options can be used as a simplified way of hedging or speculat-

ing on the price movements of the underlying asset. For example, an investor who is

bullish on a stock can buy an asset-or-nothing call option to profit from a rise in the

stock price, while an investor who is bearish can buy an asset-or-nothing put option

to profit from a fall in the stock price. Asset-or-nothing options can also be used

to create synthetic positions that mimic the payoff of other financial instruments,

such as futures, forwards, or swaps.These kind of options are often traded on unreg-

ulated platforms and may carry a higher risk of fraud or manipulation. They may

also be subject to different regulations and taxation than standard options. There-

fore, investors who wish to trade asset-or-nothing options should use platforms that

are regulated by the Securities and Exchange Commission (SEC), the Commodity

Futures Trading Commission (CFTC), or other regulators. They should also be

aware of the potential advantages and disadvantages of asset-or-nothing options

compared to other types of options.

Black-Scholes model for Asset-or-Nothing Options

Let C(S, t) and P (S, t) denote the values of the asset-or-nothing call and put op-

tions, respectively, for asset price S and time t. Using the hedging argument [7] we

can get the following equations

∂C

∂t
+

1

2
σ2S

∂2C

∂S2
+ rS

∂C

∂S
− rC = 0. (6)

The payoff of a asset-or-nothing call option at the expiry date is

fcall(S(T )) = C(S(T ), T ) =

{
S(T ), S(T ) > K,

0, S(T ) < K,
(7)

in case of asset-or-nothing put option, we have

fput(S(T )) = P (S(T ), T ) =

{
0, S(T ) > K,

S(T ), S(T ) < K,
(8)

where in both of above equations K denotes the strike price. When S = 0, the

asset remain at zero for all times hence the payoff is zero. This gives the boundary

condition

gcall(t) = C(0, t) = 0, for all 0 ≤ t ≤ T. (9)
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When S is very large, the option is almost certain to pay off the amount S. So,

after discounting for interest, we find that

hcall(t) = C(S, t) ≈ Se−r(T−t), for large S. (10)

We can consider a portfolio consisting of a asset-or-nothing put and a asset-or-

nothing call with the same strike prices and expiry dates and drive the following

relation which is called asset-or-nothing put-call parity

C(S, t) + P (S, t) = Se−r(T−t). (11)

Using the put-call parity(11), the put option value can be derived from the call

option value. The payoff functions for asset-or-nothing call and put options are

plotted in figure (1).

K

K
2

K

Asset-or-Nothing Call Option

C
asset

(ST ) =


0, ST < K,
ST
2 , ST = K,

ST , ST > K.

ST

Payoff

K

K
2

K

Asset-or-Nothing Put Option

P
asset

(ST ) =


ST , ST < K,
ST
2 , ST = K,

0, ST > K.

ST

Payoff

Figure 1: Left: Payoff function for asset-or-nothing call option. Right: Payoff
function for asset-or-nothing put option.

3 Implementation of Haar wavelets

Haar wavelets are the rectangular-shaped wave-forms consist of piecewise constant

functions. Haar wavelet transform does not permit the overlapping of the window

while approximating a function. Haar wavelets are a discrete type of wave-forms

that are generated by operating translation and dilation on a single prototype

function. The Haar wavelet family of orthogonal functions for x ∈ [0, 1] is defined

as follows:

φ(x) =

{
1, 0 ≤ x < 1

0, elsewhere,
(12)

and using this function, the Haar wavelet will define as follows

ψ(x) = φ(2x)− φ(2x− 1) =

{
1, 0 ≤ x < 1

2

−1, 1
2 ≤ x < 1.

(13)
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Let

j = 0, 1, 2, · · · ,m = 2j , k = 0, 1, 2, · · · ,m− 1, i = m+ k + 1, (14)

put h1(x) = φ(x) and

hi(x) =


1, αi ≤ x < βi,

−1, βi ≤ x < γi,

0, elsewhere,

(15)

where

αi =
k

m
, βi =

2k + 1

2m
, γi =

k + 1

m
. (16)

3.1 Function approximation

Assuming that f is an square integrable function on the interval [0.1), this function

can be written as a linear combination of the Haar wavelet family as follows

f(x) =

∞∑
i=1

aihi(x), (17)

which ai, i = 1, 2, · · · are constants. Considering J as the maximum value for j and

placing M = 2J , we can get an approximation for the square integrable function f

on the interval [0, 1) as follows.

f(x) ≃
2M∑
i=1

aihi(x). (18)

We use the following notations to simplify the calculations in the following sections.

pi,1(x) =

∫ x

0

hi(t)dτ, (19)

pi,n+1 =

∫ x

0

pi,n(t)dτ, n = 1, 2, · · · , (20)

Ci,n =

∫ 1

0

pi,n(x)dx, n = 1, 2, · · · . (21)

The following relationships can be easily obtained by the definition of the Haar

wavelet and performing some preliminary calculations [4].

pi,n(x) =


0, 0 ≤ x < αi,
1
n! (x− αi)

n, αi ≤ x < βi,
1
n! [(x− αi)

n − 2(x− βi)
n] , βi ≤ x < γi,

1
n! [(x− αi)

n − 2(x− β)n + (x− γi)
n] , γi ≤ x < 1,

(22)
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and

C1,n =
1

(n+ 1)!

[
(x− αi)

n+1 − 2(x− βi)
n+1 + (x− γi)

n+1
]
, (23)

where n = 1, 2, · · · and i = 2, 3, · · · . For the case i = 1 we have

p1,n =
xn

n!
, n = 1, 2, · · · (24)

and

C1,n =
1

(n+ 1)!
, n = 1, 2, · · · . (25)

3.2 Implementation of Haar wavelets

Change of variables

Equations (6) are defined on the spatial domain [0,∞), which represents the range

of the stock price. The application of Haar wavelets to this problem requires the

truncation of the semi-finite interval [0,∞) to a finite interval [0, Smax] as the

initial step. A careful selection of Smax is required to achieve a satisfactory level of

approximation for the interval [0, Smax]. Some research papers adopt Smax = 4E

as a common choice. Moreover, we introduce the variable x = S
Smax

to transform

the spatial domain from [0, Smax] to [0, 1], which facilitates the application of Haar

wavelets to the problem. We also use the variable τ = T − t to change the problem

from a backward to a forward time domain. Applying the above-mentioned change

of variables to equation (6), we obtain the following equations for the asset-or-

nothing call option:

− ∂C

∂τ
+

1

2
σ2x

∂2C

∂x2
+ rx

∂C

∂x
− rCcash = 0, τ ∈ [0, T ], x ∈ [0, 1], (26)

θ-weighted approach

Applying θ-weighted (0 ≤ θ ≤ 1) scheme to spatial part and forward difference to

temporal part of equation (26) yields

Ck+1(x)− θdτ

[
σ2

2
x2Ck+1

xx (x) + rxCk+1
x (x)− rCk+1(x)

]
= (27)

Ck(x) + (1− θ)dτ

[
σ2

2
x2Ck

xx(x) + rxCk
x(x)− rCk(x)

]
,

where Ck(x) = C(x, τk), τk+1 = τk + dτ and dτ is time step. Now approximate

mixed order derivative by Haar wavelets as follows:

Ck+1
xx (x) =

2M∑
i=1

αihi(x), (28)
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where αj are wavelets coefficients to be determined and hi(x) are wavelets defined

in equation (15). Integrating equation (28) from 0 to x, we obtain

Ck+1
x (x) =

2M∑
i=1

αipi,1(x) + Ck+1
x (0). (29)

The unknown term Ck+1
x (0) in equation (29) can be computed by integration of

equation (29) w.r.t x from 0 to 1. By doing so we get following,

Ck+1
x (0) = Ck+1(1)− Ck+1(0)−

2M∑
i=1

αipi,2(1), (30)

substituting equation (30) in equation (29) we have

Ck+1
x (x) =

2M∑
i=1

αi(pi,1(x)− pi,2(1)) + Ck+1(1)− Ck+1(0). (31)

Substituting Ck+1
x (0) from equation (30) in equation (29) and integrating from 0

to x leads to

Ck+1(x) =

2M∑
i=1

αi (pi,2(x)− xpi,2(1)) + x
(
Ck+1(1)− Ck+1(0)

)
+ Ck+1(0). (32)

For the simplifying, we use the following notations

Ck
xx(x) = kH(x), (33)

Ck
x(x) = kP (x) + ck,

Ck(x) = kQ(x) + xck + dk,

where

x = (x1, x2, · · · , x2M ), (34)
k = [α1 α2 · · · α2M ] ,

H = [h1(x) h2(x) · · · h2M (x)]
T
,

P = [p1,1(x)− p1,2(1) p2,1(x)− p2,2(1) · · · p2M,1(x)− p2M,2(1)]
T
,

Q = [p1,2(x)− xp1,2(1) p2,2(x)− xp2,2(1) · · · p2M,2(x)− xp2M,2(1)]
T
,

ck = Ck(1)− Ck(0),

dk = Ck(0).

Substituting the right hands of equations (28), (31) and (32) into equation (27),

using the collocation points xj = j+0.5
2M and the notations introduced in (33), we

will obtain the following system of algebraic equations,

k+1G =k N +R1 −R2, (35)
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where

G = (1 + θrdτ)Q− θrdτxP − 1

2
θσ2x2H, (36)

N = [1− (1− θ)rdτ ]Q+ (1− θ)rdτxP +
1

2
(1− θ)σ2x2H,

R1 = ck+1x+ rθdτdk+1 + dk+1,

R2 = ckx− (1− θ)rdτdk + dk,

and 1 could be obtained easily from the below equation

C(0, x) =1 Q+ x(C(0, 1)− C(0, 0)) + C(0, 0). (37)

3.3 Error analysis

Considering the notations introduced in (14), we have the following lemma for the

relations between m, k and i.

Lemma 3.1. According to the above notions and suppose the value of i is given then,

we have

m = 2⌊log2 i⌋ (38)

k = i−m (39)

where ⌊.⌋ is the floor function.

Theorem 3.2. If C(x) satisfies a Lipschitz condition on [0, 1],that is, there exists a

positive L such that for all x1, x2 ∈ [0, 1] we have |C(x1) − C(x2)| ≤ L|x1 − x2|.
Then the error bound for ∥e2M (x)∥ is obtained as

∥e2M (x)∥2 ≤ L

2
√
15M2

, (40)

where e2M (x) = C(x, t)−C2M (x, t) in which C2M (x, t) is obtained by Haar wavelet

method. Also Haar wavelet method will converge in the sense that e2M (x) goes to

zero as M goes to infinity.

Proof. Let C2M (x, t) which is obtained by Haar wavelet method, denotes the ap-

proximation of C(x, t), then error at the Jth level (M = 2J) of resolution is defined

as
e2M (x) = C(x, t)− C2M (x, t)

=

∞∑
i=2M+1

aihi(x),
(41)

where C2M (x, t) =
∑2M

i=1 aihi(x) and the coefficients ai are determined by

ai =

∫ 1

0

C(x, t)hi(x)dx = ⟨hi(x), C(x, t)⟩ ,
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here ⟨., .⟩ shows the inner product. Now, the orthogonality of the sequence hi(x)

on [0, 1] implies that

∥e2M (x)∥22 =

∫ 1

0

( ∞∑
i=2M+1

aihi(x)

)2

dx =

∞∑
i=2M+1

a2i

∫ 1

0

h2i (x)dx

=

∞∑
i=2M+1

a2i
mi

.

(42)

Equation (15) implies that

ai = ⟨hi(x), C(x, t)⟩ =
∫ 1

0

hi(x)C(x, t)dx =

∫ ki+0.5

mi

ki
mi

C (x, t) dx−
∫ ki+1

mi

ki+0.5

mi

C (x, t) dx.

(43)

By using the mean value theorem for integrals, we obtain some x1 ∈
[

ki

mi
− ki+0.5

mi

]
and some x2 ∈

[
ki+0.5
mi

− ki+1
mi

]
such that

ai = ⟨hi(x), C(x, t)⟩

=

[
ki + 0.5

mi
− ki
mi

]
C (x1, t)−

[
ki + 1

mi
− ki + 0.5

mi

]
C (x2, t)

=
1

2mi
(C (x1, t)− C2 (x2, t)) .

(44)

From the Lipschitz condition, it follows that

|ai| =
1

2mi
|C(x1)− C(x2)| ≤

1

2mi
L|x1 − x2|

≤ L

2mi

(
ki + 1

mi
− ki
mi

)
=

L

2m2
i

(45)
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Based on equations (42) and (45) we can express that

∥e2M (x)∥22 ≤
∞∑

i=2M+1

L2

4m5
i

=

∞∑
i=2M+1

L2

4
(
2⌊log2 i⌋

)5
=
L2

4

( 1

25J+5
+ · · ·+ 1

25J+5

)
︸ ︷︷ ︸

2J+1

+

(
1

25J+10
+ · · ·+ 1

25J+10

)
︸ ︷︷ ︸

2J+2

+ · · ·


=
L2

4

(
1

24J+4
+

1

24J+8
+

1

24J+12
+ . . .

)
=
L2

4

1

24J

(
1

24
+

1

28
+

1

212
+ . . .

)
=
L2

64

1

24J

[
1 +

(
1

16

)
+

(
1

16

)2

+ . . .

]
=

L2

64M4

∞∑
n=0

(
1

16

)n

=
L2

64M4

16

15
,

(46)

Taking the square root of the final equation yields

∥e2M (x)∥2 ≤ L

2
√
15M2

. (47)

4 Numerical results

To validate the efficacy of the proposed approach, a series of test issues are solved.

We seek to obtain a numerical solution for both the asset-or-nothing call option and

the asset-or-nothing put option, which will serve as two test cases. For comparison,

each numerical result has been juxtaposed with the precise answer for each scenario,

which is displayed below. The findings demonstrate that the approach outlined in

the research is a remarkably precise and effective one. Given the significance of

option prices when initiating a trade, we have placed particular emphasis on error-

checking during this stage. We performed all computations and simulations in this

paper using Python 3.11.

4.1 Pricing asset-or-nothing call option

The asset-or-nothing call option pricing problem is described by a partial differential

equation, which is accompanied by its corresponding boundary conditions. The

subsequent equations are derived from the variable transformations covered in the

preceding sections.
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− CCash
τ +

1

2
σ2xCCash

xx + rxCCash
x − rCcash = 0, τ ∈ [0, T ], x ∈ [0, 1], (48)

CCash(x, T ) =


A, x > E

Smax
,

A
2 , x = E

Smax
,

0, x < E
Smax

,

(49)

CCash(0, t) = 0, (50)

CCash(1, t) = Ae−r(T−t). (51)

Given the equations (48-51) and the values r = 0.03, T = 1, K = A = 100, and

dτ = 0.01, the numerical solutions are depicted in the figures. Figure (2) shows the

numerical solution of this problem based on haar wavelets method.
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Figure 2: Plot of the approximate solution for the asset-or-nothing call option
problem.
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As stated earlier, the option value at t = 0 is of great significance. Hence, we

will analyze the error in the option value at this particular time. Figure (3) displays

the error plots for various values of T , σ, K, and J . The top-left plot corresponds

to different values of T , the bottom-left plot to different values of σ, the top-right

plot to different values of K, and the bottom-right plot to different values of J .

The convergence of the method can be seen in this figure.
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Figure 3: Error plot at time t = 0 with different values of σ (Top-Right), T (Top-
Left), J (Bottom-Right) and K (Bottom-Left).

4.2 Pricing asset-or-nothing put option

For an asset-or-nothing put option, the following holds:

− PCash
τ +

1

2
σ2xPCash

xx + rxPCash
x − rP cash = 0, τ ∈ [0, T ], x ∈ [0, 1], (52)

PCash(x, T ) =


0, x > E

Smax
,

A
2 , x = E

Smax
,

A, x < E
Smax

,

(53)
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PCash(0, t) = Ae−r(T−t), (54)

PCash(1, t) = 0. (55)

The numerical solution of this problem using the Haar wavelet method is pre-

sented in Figure (4). Again, as mentioned before, the value of the option at t = 0

is very important. Hence, we will analyze the error in the option value at this

particular time. Figure (5) displays the error plots for various values of T , σ, K,

and J . The top-left plot corresponds to different values of T , the bottom-left plot

to different values of σ, the top-right plot to different values of K, and the bottom-

right plot to different values of J . This figure illustrates the convergence of the

method.
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Figure 4: Plot of the approximate solution for the asset-or-nothing put option
problem.

5 Conclusion
In this article, we have explored the application of the Haar wavelet method for
pricing asset-or-nothing options, which are a type of binary or digital option that
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Figure 5: Error plot at time t = 0 with different values of σ (Top-Right), T (Top-
Left), J (Bottom-Right) and K (Bottom-Left).

pays a fixed amount if the underlying asset is above or below a certain level at
maturity. The Haar wavelet method can approximate the functions involved in the
Black-Scholes partial differential equation, which is the standard model for option
pricing. We have also provided some examples of asset-or-nothing options and
solved them by using the Haar wavelet method. The results have demonstrated
the accuracy and efficiency of the Haar wavelet method in valuing asset-or-nothing
options. The Haar wavelet method is a promising technique for solving option
pricing problems, as it offers several advantages over other numerical methods,
such as simplicity, stability, and scalability. Other types of options and financial
derivatives, such as barrier options, and exotic options, can also benefit from the
application of the Haar wavelet method. We hope that this article will inspire
further research and development of the Haar wavelet method and its applications
in finance.
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