| تعداد نشریات | 61 |
| تعداد شمارهها | 2,212 |
| تعداد مقالات | 17,984 |
| تعداد مشاهده مقاله | 55,251,643 |
| تعداد دریافت فایل اصل مقاله | 28,913,479 |
Calibration of European option pricing model using a hybrid structure based on the optimized artificial neural network and Black-Scholes model | ||
| Journal of Mathematics and Modeling in Finance | ||
| دوره 4، شماره 1، مهر 2024، صفحه 67-82 اصل مقاله (493.29 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22054/jmmf.2024.78910.1128 | ||
| نویسندگان | ||
| Farshid Mehrdoust* 1؛ Maryam Noorani2 | ||
| 1Department of Applied Mathematics, Faculty of Mathematical Science, University of Guilan | ||
| 2Department of Applied Mathematics, Faculty of Mathematical Science, University of Guilan. | ||
| چکیده | ||
| This study suggests a novel approach for calibrating European option pricing model by a hybrid model based on the optimized artificial neural network and Black-Scholes model. In this model, the inputs of the artificial neural network are the Black-Scholes equations with different maturity dates and strike prices. The presented calibration process involves training the neural network on historical option prices and adjusting its parameters using the Levenberg-Marquardt optimization algorithm. The resulting hybrid model shows superior accuracy and efficiency in option pricing on both in sample and out of sample dataset. | ||
| کلیدواژهها | ||
| Artificial neural network؛ Calibration؛ Levenberg-Marquardt algorithm؛ Option pricing | ||
| مراجع | ||
|
[1] Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing models. The Journal of finance, 52(5), 2003-2049. [2] Christoffersen, P., & Jacobs, K. (2004). Which GARCH model for option valuation?. Management science, 50(9), 1204-1221. [3] Christoffersen, P., Jacobs, K., & Ornthanalai, C. (2012). GARCH option valuation: theory and evidence. [4] Cont, R., & Tankov, P. (2004). Financial modelling with jump processes (No. 22631). Chapman & Hall; CRC. [5] Dua, V. (2011). An artificial neural network approximation based decomposition approach for parameter estimation of system of ordinary differential equations. Computers & Chemical Engineering, 35(3), 545-553. [6] Griffin, J. E., & Steel, M. F. (2006). Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility. Journal of Econometrics, 134(2), 605-644. [7] Gunay, M. E. (2016). Forecasting annual gross electricity demand by artificial neural networks ¨ using predicted values of socio-economic indicators and climatic conditions: Case of Turkey. Energy Policy, 90, 92-101. [8] Horvath, B., Muguruza, A., & Tomas, M. (2021). Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models. Quantitative Finance, 21(1), 11-27. [9] Itkin, A. (2019). Deep learning calibration of option pricing models: some pitfalls and solutions. arXiv preprint arXiv:1906.03507. [10] Jamili, E., & Dua, V. (2021). Parameter estimation of partial differential equations using artificial neural network. Computers & Chemical Engineering, 147, 107221. [11] Kaeck, A., & Alexander, C. (2012). Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions. Journal of Banking & Finance, 36(11), 3110- 3121. [12] Lim, K. G., & Zhi, D. (2002). Pricing options using implied trees: Evidence from FTSE100 options. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 22(7), 601-626. [13] Mehrdoust, F., & Noorani, I. (2023). Implied higher order moments in the Heston model: a case study of S& P500 index. Decisions in Economics and Finance, 46(2), 477-504. [14] Mehrdoust, F., Noorani, I., & Belhaouari, S. B. (2023). Forecasting Nordic electricity spot price using deep learning networks. Neural Computing and Applications, 35(26), 19169-19185. [15] Mehrdoust, F., Noorani, I., & Kanniainen, J. (2024). Valuation of option price in commodity markets described by a Markov-switching model: A case study of WTI crude oil market. Mathematics and Computers in Simulation, 215, 228-269. [16] Mehrdoust, F., Noorani, I., & Fallah, S. (2022). Markov regime-switching Heston model with CIR model framework and pricing VIX and S&P500 American put options. Mathematical Reports, 24(74), 781-806. [17] Mehrdoust, F., & Noorani, I. (2019). Pricing S& P500 barrier put option of American type under Heston-CIR model with regime-switching. International Journal of Financial Engineering, 6(02), 1950014. [18] Mehrdoust, F., & Noorani, M. (2023). Prediction of cryptocurrency prices by deep learning models: A case study for Bitcoin and Ethereum. International Journal of Financial Engineering, 10(04), 2350032. [19] Mehrdoust, F., Noorani, I., & Hamdi, A. (2023). Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg-Marquardt optimization algorithm. Mathematics and Computers in Simulation, 204, 660-678. [20] Mehrdoust, F., & Noorani, I. (2023). Valuation of spark-spread option written on electricity and gas forward contracts under two-factor models with non-Gaussian L´evy processes. Computational Economics, 61(2), 807-853. [21] Mor´e, J. J. (2006, August). The Levenberg-Marquardt algorithm: implementation and theory. In Numerical analysis: proceedings of the biennial Conference held at Dundee, June 28-July 1, 1977 (pp. 105-116). Berlin, Heidelberg: Springer Berlin Heidelberg. [22] Noorani, I., & Mehrdoust, F. (2022). Parameter estimation of uncertain differential equation by implementing an optimized artificial neural network. Chaos, Solitons & Fractals, 165, 112769. [23] Platon, R., Dehkordi, V. R., & Martel, J. (2015). Hourly prediction of a building’s electricity consumption using case-based reasoning, artificial neural networks and principal component analysis. Energy and Buildings, 92, 10-18. [24] Roberts, G. O., Papaspiliopoulos, O., & Dellaportas, P. (2004). Bayesian inference for nonGaussian OrnsteinUhlenbeck stochastic volatility processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(2), 369-393. [25] Spiliopoulos, K. (2009). Method of Moments Estimation of Ornstein-Uhlenbeck Processes Driven by General L´evy Process. In: Annales de lISUP, Institut de statistique de lUniversitt’e de Paris 53: 3-18. [26] Wang, X., He, X., Bao, Y., & Zhao, Y. (2018). Parameter estimates of Heston stochastic volatility model with MLE and consistent EKF algorithm. Science China Information Sciences, 61, 1-17. [27] Witten I. H., & Frank, E. (2005). Data mining: practical machine learning tools and techniques (Data management systems). San Mateo: Morgan Kaufmann. [28] Wu, Y., Hu, J., & Zhang, X. (2019). Moment estimators for the parameters of OrnsteinUhlenbeck processes driven by compound Poisson processes. Discrete Event Dynamic Systems, 29, 57-77. [29] Xie, Z., Kulasiri, D., Samarasinghe, S., & Rajanayaka, C. (2007). The estimation of parameters for stochastic differential equations using neural networks. Inverse Problems in Science and Engineering, 15(6), 629-641. [30] Zhang, S., Zhang, X., & Sun, S. (2006). Parametric estimation of discretely sampled GammaOU processes. Science in China Series A: Mathematics, 49, 1231-1257. | ||
|
آمار تعداد مشاهده مقاله: 664 تعداد دریافت فایل اصل مقاله: 500 |
||