ذاکرینیا، حانیه؛ (1402)، «ماهیت و مبنای مسئولیت مدنی ناشی از هوش مصنوعی در حقوق ایران و کشورهای اتحادیة اروپا»، مجلۀ علمی، 10.20.13500-152.
رهبری، ابراهیم؛ (1401شهریور)، «تحلیلی بر چالشهای حقوق رقابتی کلاندادهها»، فصلنامۀ تحقیقات حقوقی، 25. 98. 320-.295
مظهری، فرزاد،(1401) امکان سنجی کاربرد هوش مصنوعی در حلّوفصل اختلافات تجاری بهعنوان داور، پایاننامۀ کارشناسی ارشد، دانشگاه تهران.
References
Mazhari, Farzad, "Feasibility of using artificial intelligence in resolving commercial disputes as an arbitrator", Master's thesis, University of Tehran, (1401). In persia
Rahbari, Ebrahim, "An analysis of the challenges of big data competitive rights", Legal Research Quarterly, 25/1401, 98 (1401). In persia
Zakarinia, Haniyeh, "The nature and basis of civil liability caused by
artificial intelligence in the laws of Iran and European Union countries", Scientific Journal, 2/1402, 1 (1402.) in persia
CHRISTIAN, G. 2019. Predictive Coding: Adopting and Adapting Artificial Intelligence in Civil Litigation. Can. B. Rev., 97, 486.
Crumbley, D. L. & Cheng, C. C. 2014. Avoid losing a Daubert challenge: some best practices for expert witnesses. ATA Journal of Legal Tax Research, 12, 41-53. https://doi.org/10.2308/jltr-50765
Ferriera, D. B. & Gromova, E. A. 2023. Electronic evidence in arbitration proceedings: empirical analysis and recommendations. Digital Evidence and Electronic Signature Law Review, 30-39.
Fingerhut, M. & Donin, N. 2016. Filling gaps between current musicological practice and computer technology at ircam. Modern Methods for Musicology. Routledge.
Frankenreiter, J. & Nyarko, J. 2022. Natural language processing in legal tech. Legal Tech and the Future of Civil Justice (David Engstrom ed.)Forthcoming. https://dx.doi.org/10.2139/ssrn.4027030
Georgieva, P. 2016. FSSAM: A fuzzy rule-based system for financial decision making in real
Grimm, P. W., Grossman, M. R. & Cormack, G. V. 2021. Artificial intelligence as evidence. Nw. J. Tech. & Intell. Prop., 19, 9.
Hampton, W. M. 2014. Predictive Coding: It’s Here to Stay. E-Discovery Bulletin. Practical Law, 28-32.
Lande, D. & Strashnoy, L. 2023. Concept networking methods based on ChatGPT & Gephi. Available at SSRN 4420452.https://dx.doi.org/10.2139/ssrn.4420452
Mjali, S. Z. 2020. Latent semantic models: a study of probabilistic models for text in information retrieval.
Murdoch, S. J., Seng, D., Schafer, B. & Mason, S. 2021. The sources and characteristics of electronic evidence and artificial intelligence. University of London Press https://doi.org/10.14296/2108.9781911507246
Pai, A. 2020. CNN vs. RNN vs. ANN–Analyzing 3 Types of Neural Networks in Deep Learning. Analytics Vidhya.
Pandey, P. & Rai, A. K. 2023. Consumer Adoption of AI-powered Virtual Assistants (AIVA): An Integrated Model Based on the SEM–ANN Approach. FIIB Business Review, 23197145231196066.
Re, R. M. & SOLOW-NIEDERMAN, A. 2019. Developing artificially intelligent justice. Stan.
Robaldo, L., Villata, S., Wyner, A. & Grabmair, M. 2019. Introduction for artificial intelligence and law: special issue “natural language processing for legal texts”. Springer.
Rosca, C., Covrig, B., Goanta, C., Vandijck, G. & Spanakis, G. Return of the AI: An analysis of legal research on Artificial Intelligence using topic modeling. Proceedings of the Natural Legal Language Processing Workshop 2020, 2020. CEUR-WS. org, 3-10.
Sobel, B. L. 2021. A new common law of web scraping. Lewis & Clark L. Rev., 25, 1.
Stark, L., Greene, D. & Hoffmann, A. L. 2021. Critical perspectives on governance mechanisms for AI/ML systems. The cultural life of machine learning: An incursion into critical AI studies, 257-280.
.
Xu, Z. 2022. Human Judges in the era of artificial intelligence: challenges and opportunities. Applied Artificial Intelligence, 36, 2013652. https://doi.org/10.1080/08839514.2021.2013652
Zhang, H., Dou, Z., Zhu, Y. & Wen, J.-R. 2023. Contrastive Learning for Legal Judgment Prediction. ACM Transactions on Information Systems, 41, 1-25.
Zhaowei, W. Legal Element-oriented Modeling with Multi-view Contrastive Learning for Legal Case Retrieval. 2022 International Joint Conference on Neural Networks (IJCNN), 2022. IEEE, 01-10. https://doi.org/10.1109/IJCNN55064.2022.9892487
Zheng, A. 2015. Evaluating machine learning models: a beginner's guide to key concepts and pitfalls, O'Reilly Media.