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Abstract: Feature selection enhances classification and clustering by improv-

ing machine learning performance and reducing computational costs through the

removal of irrelevant and redundant features. However, many existing methods

neglect complex feature relationships and fail to capture high-order dependencies,

often due to traditional algorithms’ limitations in handling nonlinear relationships.

This paper introduces a novel feature selection algorithm based on an adjacency

matrix designed for supervised data. The algorithm works in three steps: first, it

eliminates irrelevant features by evaluating each feature’s correlation with its class.

Next, it assesses pairwise feature relationships, constructing an adjacency matrix

of selected features. Finally, clustering techniques are applied to group the adja-

cency matrix into k clusters, where k represents the number of desired features;

the most representative feature from each cluster is chosen for further analysis.

This approach systematically addresses both linear and nonlinear dependencies,

enabling more efficient and accurate feature selection and overcoming limitations

in existing methods.
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1. Introduction

Feature selection is a critical preprocessing step in high-dimensional data analysis,

which aims to identify relevant features and remove irrelevant, redundant, and

noisy ones. In the current era of information explosion, diverse datasets such as

images, texts, and medical microarrays are generated at an unprecedented speed,

leading to challenges such as the curse of dimensionality, overfitting and reduced

model interpretability. Feature selection acts as a powerful tool to address these

challenges by reducing the dimensionality of the data, preserving the inherent data

structure and increasing the performance of the learning algorithm. By carefully

selecting the most informative features, this step can significantly improve the

accuracy, efficiency and interpretability of machine learning models. Such a com-

prehensive feature selection algorithm is suitable for a wide range of applications,

from image recognition to natural language processing Guyon and Elisseeff (2003),

Liu and Yu (2005).

There exist feature selection methods for both supervised and unsupervised

data. Supervised methods assess feature association by analyzing feature class

correlations, using labeled data to identify features that are most strongly associ-

ated with a target variable or class. In contrast, unsupervised techniques evaluate

feature importance based on data variance and separability without relying on

class labels Dy and Broadley (2004), He et al. (2005). Although each of the

existing algorithms often focuses on only one of these approaches, the potential

benefits of integrating both perspectives to create more robust and effective feature

selection strategies are also notable.

Direct processing of high-dimensional data not only increases the computa-

tional complexity and memory requirements, but also leads to suboptimal per-

formance due to the presence of irrelevant and noisy features. Studies show that

the number of intrinsic features of high-dimensional data are usually much lower

than the whole dimension and only a subset of features are truly informative for

tasks such as clustering and classification Ding et al. (2020). Including the ir-

relevant features in the dataset might significantly impair the performance of the

learning algorithm, leading to overfitting, poor generalization and increased com-

putational costs. Feature selection appears to be critical preprocessing step for

high-dimensional data because it facilitates dimension reduction by removing ir-

relevant and redundant features while preserving essential data features Ding et

al. (2020).

In this paper, we present a new supervised feature selection method that in-

cludes three key steps. The first step involves measuring feature class correlations

using the nonparametric mutual information-based (MINE) dependency measure-

ment technique Reshef et al. (2014). MINE is a powerful tool for detecting
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non-linear dependencies between variables and is suitable for evaluating the asso-

ciation of features in complex datasets. Then the measured correlations are nor-

malized and the features covering a proper portion of the cumulative distribution

function are selected. This portion serves as a hyperparameter and is adjustable

by the user. In the second step, the pairwise relationships between the features

selected from the first step are evaluated to construct an adjacency matrix, which

is then merged with the diagonal matrix obtained in the previous step. In this

step, almost all interactions and higher-order dependencies between features are

captured, and a more comprehensive representation of feature connectivity is pro-

vided. Finally, in the third step, a clustering technique is applied to the adjacency

matrix, where the number of clusters is equal to the number of selected features.

The most representative feature from each cluster is selected as a part of the final

feature set, which ensures the proper diversity of selected features.

The remainder of this paper is organized as follows: Section 2 reviews related

work on feature selection algorithms. Section 3 presents the proposed feature se-

lection method in detail. Section 4 evaluates the performance of the proposed

method on some benchmark datasets and compares it with state-of-the-art al-

gorithms. Finally, Section 5 concludes the paper and discusses future research

directions.

2. Related Works

Over the last few decades, extensive research has been conducted on feature se-

lection as one of the most important steps in machine learning and data mining.

Recently numerous algorithms and techniqueshave been proposed to tackle the

challenges of high-dimensional data analysis most of which focus on simple filter-

ing methods that rank features based on their individual relevance to the target

variable or class Guyon and Elisseeff (2003), Liu and Yu (2005). These methods

are computationally efficient and can handle large-scale datasets, but often fail to

capture complex interactions and dependencies between features.

To overcome the limitations of filter methods, wrapper methods were intro-

duced. They use a specific learning algorithm as a black box to evaluate feature

subsets and select the most informative ones Kohavi and John (1997). Wrap-

per methods can capture interactions and dependencies, but are computationally

expensive and may be overfitted to the specific learning algorithm used. On the

other hand, embedded methods combine the advantages of both filter and wrapper

methods by incorporating feature selection as part of the model training process

Guyon and Elisseeff (2003), Chandrashekar and Sahin (2014). These methods

are more efficient than wrapper methods and can capture feature interactions, but
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are often specific to a particular learning algorithm and may not generalize well

to other tasks or datasets.

Recently, deep learning-based feature selection methods have attracted atten-

tion due to their ability to automatically learn feature representations from raw

data Wu (2021). These methods use the powerful feature extraction capabilities of

deep neural networks to identify relevant features in an end-to-end manner, with-

out relying on manual feature engineering. However, deep learning-based methods

require large amounts of labeled data and computational resources and may not

perform well in scenarios with limited data or complex feature interactions. De-

spite the significant progress made in feature selection research, there are still

several challenges and limitations that need to be addressed. One of the most

important challenges is the lack of consideration for higher-order feature interac-

tions, as most existing methods only investigate pairwise interactions Zhao et al.

(2021). Additionally, many feature selection algorithms are sensitive to noise and

outliers in the data, which can lead to suboptimal feature subsets Gu et al. (2012).

In this paper, our goal is to present a new method for supervised feature selec-

tion that combines the strengths of the filter approach and overcomes its weakness

of considering only pairwise feature interactions. Our method uses a nonpara-

metric mutual information MINE-based dependency measurement technique to

capture nonlinear feature class correlations, and it combines a clustering-based

approach to select a diverse set of informative features. By carefully designing the

feature selection process and incorporating domain-specific knowledge, we believe

that our method can achieve advanced performance on a wide range of high-

dimensional data analysis tasks while providing insight into the structure and

properties of the underlying data.

3. Proposed Method

In this section, we present our novel supervised feature selection method, which

consists of three key steps: feature-class correlation measurement, pairwise feature

relationship evaluation, and feature clustering. The method is designed to iden-

tify the most relevant features while eliminating irrelevant, redundant, and noisy

ones, thereby improving the performance and interpretability of machine learning

models.

Step 1: Feature-Class Correlation Measurement

The initial step of our method involves assessing the correlation between each fea-

ture and the target class. Partial correlation is a suitable method for revealing

the correlation between two variables while holding other variables constant. Con-
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sidering each feature’s role separately makes partial correlation a reliable bench-

mark; however, it does not consider nonlinear relations between features. To over-

come this issue, mutual information is introduced Reshef et al. (2014), using the

nonparametric mutual information-based (MINE) dependency measurement tech-

nique. MINE is a robust tool for detecting nonlinear dependencies among variables,

making it well-suited for evaluating feature associations in complex datasets.

After computing the MINE coefficient for each feature-class pair, we standard-

ize the values using min-max normalization. This normalization process ensures

that feature-class correlations are standardized and easily comparable. Subse-

quently, we select features that encompass a specified percentage, denoted as ”P,”

of the cumulative distribution function of the normalized MINE scores. This pa-

rameter, akin to a hyperparameter, allows us to control the balance between the

accuracy of feature selection and the number of features chosen. Adjusting the

value of ”P” enables us to fine-tune the trade-off, facilitating the exclusion of ir-

relevant features and the identification of the most pertinent features related to

the class.

Step 2: Pairwise Feature Relationship Evaluation

In the second step of our method, we evaluate the pairwise relationships between

the features selected in the previous step. This approach is motivated by the recog-

nition that feature interactions and dependencies can provide valuable information

for feature selection beyond what can be obtained from feature-class correlations

alone. To quantify these pairwise relationships, we construct an adjacency matrix

denoted as A, where each element A[i, j] represents the MINE statistic between

features i and j. Notably, the diagonal elements of the matrix A are augmented

by adding the normalized MINE scores calculated in the initial step, which reflect

individual feature-class correlations and feature interpretability. By incorporat-

ing pairwise feature relationships into the adjacency matrix, we aim to capture

complex interactions and higher-order dependencies between features, providing a

more comprehensive representation of feature connectivity. This information can

be particularly useful in scenarios where features are highly correlated, such as in

cases of multicollinearity or feature redundancy.

Step 3: Clustering Features

In the last phase of the method, we use a clustering technique on the adjacency

matrix A to find a diverse set of informative features. The number of clusters

matches the chosen number of features, represented by k. We employ a common

clustering method like k-means or hierarchical clustering to group features into k

clusters based on their relationships with each other.

After clustering, we pick the feature closest to the center of each cluster as the

cluster’s representative feature. This selection ensures that each chosen feature
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is closely related to its cluster’s features and less related to features outside the

cluster. By selecting one feature from each cluster, we avoid redundancy and focus

on informative and complementary features.

The result of our method is a set of k features ready for use in various machine

learning tasks like classification or regression. The value of k can be adjusted to

meet specific needs, such as reducing dimensionality or considering computational

constraints. We refer to this algorithm as FSAM standing for Feature Selection by

Adjacency Matrix. Its flowchart is presented in Figure 1. We note that one of the

most important characteristics of FSAM is the possibility of parallel implemen-

tation. More precisely, computing correlations can be done in parallel while the

comparison of the weights and selection of the most important features are inde-

pendent and can be done in parallel as well. This leads to the successful prediction

of features in high dimensional datasets. This can be seen in Section 4.

Figure 1: FSAM flowchart

4. Experiments and Results

In this section, we present the results of our experiments on benchmark datasets to

evaluate the performance of our proposed feature selection method. We compare

our method (FSAM) with state-of-the-art feature selection algorithms and demon-

strate its effectiveness in obtaining higher accuracy and efficiency. In fact, FSAM,
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Table 1: Number of samples and important features in benchmark datasets

Number of samples Number of important features

Optical 5620 64

Cylinder 541 22

Musk 476 166

Mice 180 77

when combined with all learning algorithms**,** including logistic regression, neu-

ral networks, XGBoost, support vector machines, and random forests, outperforms

other feature selection methods. Figure 2 presents the two best learning algorithms

for each of the three well-known datasets:

• Optical Recognition of Handwritten Digits

• Cylinder Bands

• Musk (version 1)

• Mice Protein Expression

The number of features and samples for each dataset is presented in Table 1.

The presented results confirm the efficiency of FSAM in choosing the most

important features more accurately. We note that the selected datasets represent

different types based on the number of features and samples.

Furthermore, the most important characteristics of these three datasets are the

high number of features in Musk (version 1), the low number of features in Cylinder

Bands, and the high number of samples in Optical Recognition of Handwritten

Digits. This means that our tests cover a variety of dataset types and confirm

the efficiency of our algorithm on datasets with both low and high numbers of

features as well as a high number of samples. Moreover, as shown in Figures

2(a)–2(d), FSAM outperforms other methods with a considerable difference in

accuracy. However, in Figures 2(e) and 2(f), while all methods achieve very high

accuracy, FSAM still outperforms others.

A well-known benchmark for investigating the efficiency of feature selection

algorithms is Fscore which is defined as Ting (2011):

recall =
True positive

True positive + False negative
,

precision =
True positive

True positive + False positive
,

Fscore = 2
precision × recall

precision + recall
.
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Figure 2: Comparison of FSAM to other FS methods

In Table 2 the F scores for benchmark datasets are reported. In each dataset, the

average results for different classification strategies, including logistic regression,

neural networks, support vector machines, and random forest are reported.

Table 2: Comparison on F scores across benchmark datasets

Dataset Method Fscore Dataset Method Fscore

Optical Adjacency 0.9823 Cylinder Adjacency 0.8858

Chi2 0.9496 Chi2 0.8764

F classif 0.9647 F classif 0.8532

Mutual 0.9388 Mutual 0.8661

Dataset Method Fscore Dataset Method Fscore

Musk Adjacency 0.9272 Mice Adjacency 0.8531

Chi2 0.8965 Chi2 0.8346

F classif 0.8749 F classif 0.8671

Mutual 0.8834 Mutual 0.8478

This evaluation confirms the efficiency of our proposed algorithm in selecting

the best features with higher precision and recall on test datasets.
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5. Concluding Remarks

In this study, we introduced a new supervised feature selection approach that uti-

lizes the strengths of the filter method while addressing its limitations, particularly

its focus on pairwise feature interactions. Our method uses a nonparametric tech-

nique (MINE) to capture nonlinear correlations between features and incorporates

a clustering-based strategy to select a diverse set of informative features. Our ex-

periments on standard datasets demonstrate the effectiveness of our approach in

increasing model accuracy and efficiency compared to existing feature selection

techniques.

There are several potential research avenues arising from our work. First,

we plan to extend our method to accommodate unsupervised, semi-supervised,

and weakly supervised scenarios by incorporating domain-specific knowledge to

guide feature selection. Second, we intend to investigate the interpretability of our

method, especially in the context of complex models such as deep neural networks.

By elucidating the data structure and feature importance, we believe our approach

can contribute to the development of transparent and reliable machine learning

systems.

Finally, we are eager to explore the practical application of our feature selec-

tion method in real-world domains such as healthcare, finance, and environmental

science. By collaborating with domain experts and incorporating their expertise

into the feature selection process, we anticipate tailoring our method to specific

applications and providing valuable insights for decision -making and problem

-solving.
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