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1. Introduction

Meta-analysis may be broadly defined as the quantitative review and analysis of

the results of related but independent studies (Normand 1999). In every meta-

analysis, the point estimates of the effect size will differ between different studies

present in the analysis. One cause for this is sampling error; however, often, there

is more, i.e., real differences exist between studies, which is called heterogeneity.

DerSimonian and Laird (1986) introduced a statistical model for dealing with this

heterogeneity, which called the ”random-effects model.”

In meta-analysis, specially in meta-analysis of clinical trials, the data in each

trial summarized by one or more outcome measure estimates along with their

standard errors. If the summary data are multi-dimensional, usually, the data

analysis is restricted to several separated univariate analysis (Arends 2006).

Houwelingen et al. (1993) were the first that consider multivariate random-

effect meta-analysis. They introduced a bivariate linear random-effect model for

the joint analysis of one estimated outcome measure per treatment group. These

results often to the synthesis of multiple summary statistics, that are correlated

(Gleser and Olkin 1994), which was ignored by performing a separate meta-analysis

for each outcome. In contrast, a multivariate meta-analysis model, like that of

Berkey et al. (1998) Utilizes the correlation and jointly synthesizes the outcomes,

to estimate the multiple pooled effects simultaneously. Glas et al. (2003) apply

a bivariate meta-analysis model to a systematic review of tumor markers. How-

ever, all Bayesian bivariate models that we know are parametric. The purpose of

this paper is to present a bivariate Bayesian nonparametric random-effect meta-

analysis.

Bayesian nonparametric and semiparametric univariate meta-analysis have been

studied by authors like Muller et al. (2004), Burr and Doss(2005) and Ohlsen et

al. (2006). The remaining of this paper organized as follows. In section 2, we

will present our model. In section 3, we will compute the posterior distributions.

In section 4, we will study a simulated example, and finally, in section 5, we will

employ our proposed model for a real example.

2. Data structure and model

The Dirichlet process (Ferguson 1973) has been an overwhelming mechanism used

as the prior for the unknown distribution in the model specification, especially

when we use from a multinomial distribution. In meta-analysis literature, this
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prior was used for various models, too, which between them we can mention at

Burr and Doss (2005) and Ohlsen et al. (2006). In this paper, we will generalize

the following model of Burr and Doss (2005) to a bivariate meta-analysis.

Di|ψi
ind∼ N(ψi, σ

2
i ) i = 1, ...,m;

ψi|F
ind∼ F i = 1, ...,m;

F |µ, τ ind∼ DMN(µ,τ2);

µ|τ ind∼ N(c, dτ2);

γ = 1
/
τ2

ind∼ Γ(a, b).

(2.1)

To do this, we first bring the definition of a mixture of the Dirichlet process,

which was introduced by Antoniak (1974) and Sethuraman constructive defini-

tion of the Dirichlet process (Sethuraman 1994), which will be used in posterior

computations.

Definition 1: Let Hθ for θ ∈ Θ ⊂ <k be a parametric family of distributions

on the real line, and λ be a distribution on Θ. Suppose that for each θ, we have

Mθ > 0 be known weights, and let αθ = MθHθ. If θ is chosen from λ, and F is

chosen from Dαθ , the Dirichlet process with parameter αθ (Ferguson 1973, 1974),

then we say that the prior on F is a mixture of Dirichlet processes (Antoniak

1974). In other words, mixture of Dirichlet processes, is a Dirichlet process which

its measure parameter is itself a random variable.

Definition 2: Let α be a nonzero finite measure on (χ, β). Let β(B) = α(B)
α(λ)

be the normalized probability measure arising from α . Let N be the set of positive

integers and F be the σ -field of all subsets of N. Let {Ω, S,Q} be a probability

space supporting a collection of random variables (θ, Y, I) = ((θj , Yj), j = 1, ..., I),

taking values in (([0, 1]× χ)
∞ ×N, (ε×B)

∞ × F ), with a joint distribution de-

fined as follows. The random variables (θ1, θ2, ...) are independently and identically

distributed with a common Beta distribution Beta (1, α(χ)) .

The random variables (Y1, Y2, ...) are independent of the (θ1, θ2, ...) and i.i.d.

among themselves with common distribution β . Let p1 = θ1 and pn = θn
∏

1≤m≤n−1
(1−

θm) for n = 2, 3, ... . Let P (I = n|(θ, Y )) = pn, for n = 1, 2, ... . Define

p(θ, Y ;β) = p(B) =

∞∑
n=1

pnδYn(B) (2.2)

Where δx(.) stands for the probability measure degenerate at x .We will denote

the random measure in (2.2) by p for simplicity of notations . Random measure p
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have a Dirichlet distribution.

As usual, in the meta-analysis literature, we will take a normal distribution on

the first level of our model and a Dirichlet process before introducing the following

Bayesian nonparametric bivariate hierarchical model. It was typically supported

by some theoretical results, for example, the asymptotic normality of maximum

likelihood estimates.

Di|β(1)
i , β

(2)
i

ind∼ N2(β
(1)
i X

(1)
i , β

(2)
i X

(2)
i , σ

(1)2

i , σ
(2)2

i , ρi) i = 1, ...,m; (2.3)

β
(j)
i |F

(j) ind∼ F (j) j = 1, 2 and i = 1, ...,m; (2.4)

F (j)|µ(j), τ (j)
ind∼ DMN(µ(j),τ(j)2 ) j = 1, 2; (2.5)

µ(j)|τ (j) ind∼ N(c(j), d(j)τ (j)
2

); (2.6)

γ(j) = 1
/
τ (j)

2
ind∼ Γ(a(j), b(j)). (2.7)

Where a(j), b(j), d(j) > 0 and −∞ < c(j) <∞ are arbitrary but fixed.

In this model, we estimate σ
(j)
i ’s and ρi’s along with data, which due to Der-

Simonian and Laird (1986) have a little effect, if the number of studies wasn’t

little. Note that following Burr and Doss (2005), we adopt that subscripting a

distribution indicates conditioning. The main question is whether the mean of

F (j)’s, the distributions of study-specific effects, is different from 0 or not. Now,

we will compute posterior distributions.

3. The Posterior Computations

Using the well known fact that (Burr and Doss 2005):

If X1, ..., Xm are
iid∼ F , F ∼ DMH , then

π(Xi|X−(i)) =

MH +
∑
j 6=i

δXj

M +m− 1
(3.8)

and

π{β(1)

(−i),β
(2)

(−i),µ
(1),µ(2),τ(1),τ(2)}(Di|β(1)

i , β
(2)
i ) = π(Di|β(1)

i , β
(2)
i )

= N2(β
(1)
i X

(1)
i , β

(2)
i X

(2)
i , σ

(1)2

i , σ
(2)2

i , ρi) (3.9)
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Where first equality in equation (3.9) is because β
(j)
(−i), µ

(j), τ (j), only through their

effects on β
(j)
i , affectDi, and the last equality is just the model statement (2.3).

Now, we combine equations (3.8) and (3.9) to achieve

πD(β
(1)
i , β

(2)
i |β

(1)
(−i), β

(2)
(−i), µ

(1), µ(2), τ (1), τ (2)).

Theorem: Under above situations, the posterior distribution of (β
(1)
i , β

(2)
i )

given other values of (β(1),β(2)), (µ(1), µ(2)), (τ (1), τ (2)) and the data is in the

form of:

πD(β
(1)
i , β

(2)
i |β

(1)
(−i), β

(2)
(−i), µ

(1), µ(2), τ (1), τ (2)) ∝

C(1,2)N(A
(1)
i , A

(2)
i , B

2(1)
i , B

2(2)
i , ρi)

+
M

(M +m− 1)2

∑
k 6=i

δ
β
(2)
k

N2(β
(1)
i X

(1)
i , β

(2)
k X

(2)
k , σ

2(1)
i , σ

2(2)
i , ρi)N(µ(1), τ2(1))

+
M

(M +m− 1)2

∑
k 6=i

δ
β
(1)
k

N2(β
(1)
k X

(1)
k , β

(2)
i X

(2)
i , σ

2(1)
i , σ

2(2)
i , ρi)N(µ(2), τ2(1))

+
M2

(M +m− 1)2

∑
k 6=i

∑
h6=i

δ
β
(1)
k

δ
β
(2)
k

N2(β
(1)
k X

(1)
k , β

(2)
h X

(2)
h , σ

2(1)
i , σ

2(2)
i , ρi)

Where

A
(1)
i =

(1− ρ2i )σ
2(1)
i µ(1) + τ2(1)D

(1)
i X

(1)
i

(1− ρ2i )σ
2(1)
i + τ2(1)X

2(1)
i

B
2(1)
i =

σ
2(1)
i τ2(1)

(1− ρ2i )σ
2(1)
i + τ2(1)X

2(1)
i

(3.10)

A
(2)
i =

(1− ρ2i )σ
2(2)
i µ(2) + τ2(2)D

(2)
i X

(2)
i

(1− ρ2i )σ
2(2)
i + τ2(2)X

2(2)
i

B
2(2)
i =

σ
2(2)
i τ2(2)

(1− ρ2i )σ
2(2)
i + τ2(2)X

2(2)
i

(3.11)

C(1,2) = M2

(M+m−1)2N(µ(1)X
(1)
i , (1− ρ2i )σ

2(1)
i + τ2(1)X

2(1)
i )

×N(µ(2)X
(2)
i , (1− ρ2i )σ

2(2)
i + τ2(2)X

2(2)
i )eR

(3.12)

and

R =
ρi

(1− ρ2i )
{

(
D

(1)
i − β

(1)
i X

(1)
i

σ
(1)
i

)(
D

(2)
i − β

(2)
i X

(2)
i

σ
(2)
i

)

−B−(1)i B
−(2)
i

(
β
(1)
i −A

(1)
i

)(
β
(2)
i −A

(2)
i

)
}

Proof:

πD(β
(1)
i , β

(2)
i |β

(1)
(−i), β

(2)
(−i), µ

(1), µ(2), τ (1), τ (2)) ∝

π(β
(1)
i , β

(2)
i |β

(1)
(−i), β

(2)
(−i), µ

(1), µ(2), τ (1), τ (2))
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×L(D|β(1)
i , β

(2)
i , β

(1)
(−i), β

(2)
(−i), µ

(1), µ(2), τ (1), τ (2))

∝ π(β
(1)
i |β

(1)
(−i), µ

(1), τ (1))π(β
(2)
i |β

(2)
(−i), µ

(2), τ (2))

×L(D|β(1)
i , β

(2)
i , β

(1)
(−i), β

(2)
(−i), µ

(1), µ(2), τ (1), τ (2))
(3.13)

∝

MN(µ(1), τ2(1)) +
∑
k 6=i

δ
ψ

(1)
k

M +m− 1


MN(µ(2), τ2(2)) +

∑
k 6=i

δ
β
(2)
k

M +m− 1


×N2(β

(1)
i X

(1)
i , β

(2)
i X

(2)
i , σ

2(1)
i , σ

2(2)
i , ρi) (3.14)

=

(
M

M +m− 1

)2

N(µ(1), τ2(1))N(µ(2), τ2(2))N2(β
(1)
i X

(1)
i , β

(2)
i X

(2)
i , σ

2(1)
i , σ

2(2)
i , ρi)

+
M

(M +m− 1)2

∑
k 6=i

δ
β
(2)
k

N2(β
(1)
i X

(1)
i , β

(2)
k X

(2)
k , σ

(1)2

i , σ
(2)2

i , ρi)N(µ(1), τ (1)
2
)

+
M

(M +m− 1)2

∑
k 6=i

δ
β
(1)
k

N2(β
(1)
k X

(1)
k , β

(2)
i X

(2)
i , σ

(1)2

i , σ
(2)2

i , ρi)N(µ(2), τ (1)
2
)

+

(
M

M +m− 1

)2∑
k 6=i

∑
h 6=i

δ
β
(1)
k

δ
β
(2)
k

N2(β
(1)
k X

(1)
k , β

(2)
h X

(2)
h , σ

(1)2

i , σ
(2)2

i , ρi)

Now we compute the first term of the above equation separately.

I =

(
M

M +m− 1

)2

N(µ(1), τ2(1))N(µ(2), τ2(2))N2(β
(1)
i X

(1)
i , β

(2)
i X

(2)
i , σ

2(1)
i , σ

2(2)
i , ρi)

=
(

M
M+m−1

)2
1

4π2
√

(1−ρ2i )σ
(1)
i σ

(2)
i τ(1)τ(2)

exp

[
−
(
β
(1)
i −µ

(1)
)

2τ2(1)

2

−
(
β
(2)
i −µ

(2)
)

2τ2(2)

2
]

× exp

[
− 1

2(1−ρ2i )

{(
D

(1)
i −β

(1)
i X

(1)
i

σ
(1)
i

)2

+

(
D

(2)
i −β

(2)
i X

(2)
i

σ
(2)
i

)2
}]

× exp

[
− 1

2(1−ρ2i )

{
−2ρi

(
D

(1)
i −β

(1)
i X

(1)
i

σ
(1)
i

)(
D

(2)
i −β

(2)
i X

(2)
i

σ
(2)
i

)}]
(3.15)

Now with some algebraic computations we have:

I =

(
M

M +m− 1

)2
1

4π2
√

(1− ρ2i )σ
(1)
i σ

(2)
i τ (1)τ (2)

× exp

[
− 1

2(1− ρ2i )

{
B
−2(1)
i

(
β
(1)
i −A

(1)
i

)2
+B

−2(2)
i

(
β
(2)
i −A

(2)
i

)2}]
× exp

[
− 1

2(1− ρ2i )

{
−2ρiB

−(1)
i B

−(2)
i

(
β
(1)
i −A

(1)
i

)(
β
(2)
i −A

(2)
i

)}]
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× exp

−
(
D

(1)
i − µ(1)X

(1)
i

)
2
[
(1− ρ2i )σ

2(1)
i + τ2(1)X

2(1)
i

] −

(
D

(2)
i − µ(2)X

(2)
i

)
2
[
(1− ρ2i )σ

2(2)
i + τ2(2)X

2(2)
i

] +R


I = C(1,2)N

(µ(1),µ(2))
−,− (A(1), A(2), B2(1), B2(2), ρi) ♦

For generating (µ(1), µ(2), τ (1)
2

, τ (2)
2

) form πD(µ(1), µ(2), τ (1), τ (2)|β(1),β(2)) note

that:

πD(µ(1), µ(2), τ2(1), τ2(2)|β(1),β(2)) = π(µ(1), µ(2), τ2(1), τ2(2)|β(1),β(2))

= π(µ(1), τ (1)|β(1))π(µ(2), τ (2)|β(2))

Which have no known closed form, so as Burr and Doss (2005) and Ohlsen

et al.(2006) we will use of Sethuraman construction in order to making sure that

these posterior distribution have closed form.

Suppose m(j)∗ be numbers of distinct values of β
(j)
i and define β(j)

∗
= 1

m(j)∗∑dist
β
(j)
i , where ‘dist’ in sum shows that the sum is taken only on distinct values.

So the posterior distributions will be of the form of prior distributions with updated

parameters a(j)
′
, b(j)

′
, c(j)

′
and d(j)

′
where:

a(j)
′

= a(j) +
m(j)∗

2

b(j)
′

= b(j) +
1

2

dist∑
(β

(j)
i − β(j)

∗
)2 +

m(j)∗(β(j)
∗
− c(j))2

2(1 +m(j)∗d(j))

c(j)
′

=
c(j) +m(j)∗d(j)β(j)

∗

1 +m(j)∗d(j)

d(j)
′

=
1

m(j)∗ + d(j)−1 .

4. The Gibbs Sampling

Our proposal Gibbs sampler has two steps, and is as follows:

Step 1: Update (β(1),β(2)). For i = 1, ...,m we generate successively (β
(1)
i , β

(2)
i )

given the current values of (β
(1)
j , β

(2)
j ), j 6= i, (µ(1), µ(2)), (τ (1), τ (2)) and the

data.

Step 2: Update (µ(1), µ(2), τ (1), τ (2)). To generate (µ(1), µ(2), τ (1), τ (2)) given

(β(1),β(2)), we perform two steps:

a: generate (µ(1), µ(2)) from its marginal conditional distribution given (β(1),β(2)).

b: generate (τ (1), τ (2)) from its conditional distribution given (µ(1), µ(2)), (β(1),β(2)).
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Table 1: Estimate, MSE and Confidence Interval of ψ(1) and ψ(2)

ψ(1) ψ(2)

Estimate scenario one −0.0498 −0.0085

scenario two −0.0569 2.0597

MSE scenario one 0.0164 0.0766

scenario two 0.900 0.3230

Confidence interval scenario one (−1.7587, 1.5816) (−1.3903, 1.4869)

scenario two (−0.8906, 0.7272) (1.4169, 2.7724)

5. Simulation Study

In this section we implement presented model on simulated data using a R codec

which is available by request from second authors. For this purpose we will study

two scenarios. In the first scenario each centers contains two population that have

joint distribution as:

N2

((
0

0

)
,

(
4 3

3 9

))
In the second scenario, each center contain two population too, where means

of these two populations are not equal, the joint distribution for this scenario is

as:

N2

((
0

2

)
,

( √
2 0.5

√
2

0.5
√

2 1

))
In each scenario, we use 10 centers. And do this 15 times, and saw that the

algorithm became a little diverge after 5 iterations, so we use the first 5 iterations

and report the mean of these iterations for estimated parameters.

We carry out our model, using simulated data. The estimates, MSE’s and

confidence intervals of ψ(1)ψ(1) and ψ(2)ψ(2)and mean of F (1) and F (2) computed and

come in the Tables (1) and (2), also plots of estimates in iterations plot and come

as Figure (1), for computing these quantities we run the Gibbs sampler 1500 times

and burn out the first 500 run. So in Figure (1) each point shows the estimated

value of one of the parameters in one iteration of the method.

For scenario one, all confidence intervals involve 0, so on one hand, the number

of studies is enough, and on the other hand, the means of two populations in each

center are equal to 0.

In scenario two confidence intervals of ψ(1) and mean of F (1) involves 0. Al-

though confidence interval of mean of F (2) doesn’t contain 0 and so the number
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Figure 1: histogram of parameters in iteration of Gibbs sampler. In each scenario

histograms plotted for ψ(1), ψ(2),mean of F (1) and mean of F (2) respectively
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Table 2: Estimate, MSE and Confidence Interval of mean of F (1) and mean of

F (2)

mean of F (1) mean of F (2)

Estimate scenario one 0.0009 0.0119

scenario two −0.0445 2.0610

MSE scenario one 0.0268 0.0815

scenario two 0.0754 0.2860

Confidence interval scenario one (−2.8012, 1.7000) (−1.7202, 1.7342)

scenario two (−0.9927, 0.8752) (1.2926, 2.8284)

of studies aren’t enough but confidence interval of ψ(2) contain 2; i.e. we came at

the true decision.

6. A Real Example: The Efficacy of BCG Vaccine

Against Tuberculosis

For illustrating above method we use of the meta-analysis data set given by Colditz

et al. (1994) and Berkey et al.(1995) which is also reconsidered by Arends (2006).

The data set concerns 13 trials on the efficacy of BCG vaccine against tuberculosis.

In each trial a vaccinated group is compared with a non-vaccinated control group.

The data consist of the sample size in each group and the number of cases of

tuberculosis and is as Table (3):

As Arends (2006) mentioned, considering only the differences between the

study arms may hide a lot of information. Therefore, it is wise to consider the

pair of outcomes of the two treatments. This is nicely done in the l’Abbe-plot

(1987), that gives a bivariate representation of the data by plotting the log odds

in arm A versus the log odds in arm B. Arends (2006) showed the plot (Figure 4

of chapter3) for the data of this example with A the vaccinated arm and B the not

vaccinated arm. As an example we carry out a bivariate meta-analysis with ψ
(1)
i

and ψ
(2)
i the log odds of tuberculosis in the vaccinated and the not-vaccinated

control arm, respectively. Since we didn’t have the variance and covariance for

centers, we use estimated ones with Arends (2006) that obtained for pooled data,

for each center. In This example, our goal is obtaining estimates of ψ(1) and ψ(2)

and to understand that if the number of studies in this data set is enough for

making inference about efficacy of BCG vaccine against tuberculosis or not.
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Table 3: Data from Clinical Trials on Efficacy of BCG Vaccine In The Prevention

of Tuberculosis

Vaccinated Not Vaccinated

Trial Disease No Disease Disease No Disease

1 4 119 11 128

2 6 300 29 274

3 3 228 11 209

4 62 13536 248 12619

5 33 5036 47 5761

6 180 1361 372 1079

7 8 2537 10 619

8 505 87886 499 87892

9 29 7470 45 7232

10 17 1699 65 1600

11 186 50448 141 27197

12 5 2493 3 2338

13 27 16886 29 17825
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Note that because variances and covariances of each trial were so that cause

the covariance matrix became singular, for estimating them and using in the first

level of the model, we use from a fixed effect approach.

For this purpose, we run the Gibbs sampler 1500 times and burns the first 500

times. The results are reported in Tables (3) and (4).

Table 4: Estimate and Confidence interval of ψ(1) and ψ(2)

ψ(1) ψ(2)

Estimate −2.3602 −3.4447

Confidence interval (−2.7897,−2.0860) (−3.6746,−3.2364)

Table 5: Estimate and Confidence Interval of mean of F (1) and mean of F (2)

mean of F (1) mean of F (2)

Estimate −2.4649 −3.5837

Confidence interval (−3.0319,−2.0834) (−4.3863,−3.1938)

So with these results although we obtain estimates and confidence intervals

for ψ(1) and ψ(2) but with respect to confidence intervals of mean of F (1) and

mean of F (2) and this fact that last confidences don’t contain 0, the number of

studies aren’t enough to making inference, and we need more studies.
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