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Abstract:

A proper method of monitoring a stochastic system is to use the control charts

of statistical process control in which drift in characteristics of output may be due

to one or several assignable causes. In the establishment of X charts in statistical

process control, an assumption is made that there is no correlation within the

samples. However, in practice, there are many cases where the correlation does

exist within the samples. It would be more appropriate to assume that each sam-

ple is a realization of a multivariate normal random vector. Using three different

loss functions in the concept of quality control charts with economic and economic

statistical design leads to better decisions in the industry. Although some research

works have considered the economic design of control charts under single assignable

cause and correlated data, the economic statistical design of X control chart for

multiple assignable causes and correlated data under Weibull shock model with

three different loss functions have not been presented yet. Based on the optimiza-

tion of the average cost per unit of time and taking into account the different

combination values of Weibull distribution parameters, optimal design values of
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sample size, sampling interval and control limit coefficient were derived and cal-

culated. Then the cost models under non-uniform and uniform sampling schemes

were compared. The results revealed that the model under multiple assignable

causes with correlated samples with non-uniform sampling integrated with three

different loss functions has a lower cost than the model with uniform sampling.

Keywords: Economic statistical design, X control chart, Multiple assignable

causes, Weibull shock model, Correlated data, Taguchi loss function, Linear loss

function, Exponential loss function.
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1. Introduction

The method of SPC firstly started from Shewhart’s control charts. Control charts

can be used for monitoring the production process and eliminating the effect of

assignable causes. Various control chart techniques have been developed and

widely applied in industries. In designing any control chart, three fundamen-

tal questions need to be answered about so-called design parameters. First, what

should the sample size be? Second, how often should the samples be taken? Third,

what should the control limits coefficient be? The optimal choice of chart param-

eters has a huge impact on the performance of a control chart.

In the existing literature, different methods have been developed for deciding the

design parameters. The first method was the heuristic method in which some of

the quality control Gurus suggested different values for the design parameters.

Then, statistical methods were used to calculate the optimal values of the design

parameters. Girshick and Rubin (1952) presented the concept of economic design

for the first time and their study became a basis for subsequent research. Duncan

(1956) in his paper, adopted the economic design of X control charts under the ex-

ponential shock model. Although the economic consequences are considered in the

economic design, this design is very poor in terms of statistical criteria (Woodall

(1986)). To remove the weaknesses of the economic model, Saniga (1989) pro-

posed a new model to combine the benefits of both pure statistical and economic

designs while minimizing their weaknesses. This leads to proposing the economic

statistical design, where statistical constraints are incorporated into the economic

design. Thus, it is one of the most versatile approaches in control chart designs,

as it considers both cost and statistical performance of the control charts.

In Duncan’s paper Duncan (1956), only single assignable cause made a shift in

the process mean. In industry, there are some situations when multiple assignable

causes affect the model. Therefore, many researchers are interested in present-

ing a model in these situations (Gibra (1981);Chung (1991);Yang and et al.

(2010)). Duncan (1971) extended his model from single assignable cause to mul-

tiple assignable causes where the assignable causes occurred independently. Based

on Duncan’s model, Yu and et al. (2010) presented an economic statistical design

for a control chart with multiple assignable causes and imposed constraints on

Type I and Type II errors.

The economic and economic statistical design of control charts needs to have a

probability distribution for a process failure mechanism to put process costs in

one model. Transition in the process from the state of control to out of control

is called process failure mechanism (PFM) or shock model. A lot of distributions
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such as Exponential, Weibull, Generalized exponential, Burr 12, Gamma, Pareto

and. . . ., are used as a failure mechanism (Duncan (1956);Banerjee and Rahim

(1988); Moghadam and et al. (2016);Heydari and et al. (2016);Pasha and et

al. (2017);Al-Oraini and Rahim (2002);Kraleti and Kambagowni (2010).These

distributions have applications in other fields such as the distribution of life. These

distributions have fixed, decreasing and increasing failure rates.

Since using the distributions with increasing failure rate corresponds to reality in

the industry, Banerjee and Rahim (1988) used the Weibull distribution instead of

exponential distribution to generalize Duncan (1956) model under non-uniform

sampling scheme. Based on the cost model of Banerjee and Rahim (1988) and

Duncan (1971) model Chen and Yang (2002) presented the economic design

of control charts under Weibull shock model with multiple assignable causes and

variable sampling intervals.

The measurements within the samples in the above-mentioned models are assumed

to be independently distributed in the design procedure of a control chart. Leav-

enworth and Grant (2000) stated that this assumption might not be defendable in

some specific processes; for example, the collected measurements within a sample

from the production process, which comprises multiple but similar characteris-

tics in a single part. Other specific examples include several cavities on a single

casting, multiple pins on an integrated circuit chip, or multiple contact pads on

a single machine mount, which may be correlated. Neuhardt (1987) investigated

the effects of correlation existing within a subgroup in a control chart. Yang and

Hancock (1990) extended Neuhardt’s work to determine the effect of correlated

data on X, R, S and S2charts by Monte Carlo Simulation studies. Chou and et al.

(2001) combined the Yang and Hancock (1990) model with the economic design

approach to determine the parameters of average control charts under correlated

samples. Liu and et al. (2002) employed Yang and Hancock’s correlation model

and the fixed-sampling-interval (FSI) policy to develop a minimum-loss design of

X charts for correlated data. Chen and et al. (2007) combined Banerjee and

Rahim (1988) cost model with Yang and Hancock (1990) correlation model to

develop an economic statistical design model of X charts for processes with cor-

related data and the Gamma failure mechanism.

The use of control charts implies that quality loss is considered as the cost when

the quality characteristics are outside the specification limits. All products falling

within the control limits are considered as having the same quality regardless of

the deviation of their quality characteristic from its target value. However, this

is not the case when it comes to real-life examples in which any deviation from



Minimum Loss Design of X Control Chart for Correlated . . . 103

the target value will incur a cost to the customers. Taguchi and et al. (1989)

defined quality loss as ”the loss to society caused by the product after it is shipped

out.” His quadratic loss function is well known and has been widely used in all

fields. It is used to estimate the quality loss of a product when its quality charac-

teristic deviates from its target value. Until now, a lot of economic and economic

statistical design developed for control chart by the combination of classic models

like Duncan and Lorenzen Vance model by Taguchi loss function (Safaei and et

al. (2012); Al-Ghazi and et al. (2007); Yang (1998); Koo and Lin (1992)). In

economic and economic statistical design, loss cost in control and out of control

time is calculated with Taguchi loss function in many researches (Serel and et al.

(2003); Elsayed and Chen (1994). Yu and Chen (2009) presented the economic

statistical design of the control chart with the Taguchi loss function under multiple

assignable causes.

We consider linear, Taguchi (quadratic), and exponential loss functions which are

commonly used in the literature (Elsayed and Chen (1994); Moskowitz and et

al. (1994); Serel and et al. (2003). For a given deviation from the target, the

implied quality cost depends on the loss function used. Using numerical examples,

we explore the impact of the form of the loss function on the chart parameters

minimizing the overall cost.

The economic statistical design of X control chart under Weibull shock model for

correlated data with multiple assignable causes and three different loss functions

is not presented yet and this paper presents economic statistical design of X con-

trol chart under Weibull shock model with multiple assignable causes and three

different loss functions for correlated data by using the concepts of the average

time since the occurrence of an assignable cause until the chart alarms (AATS)

and the expected number of false alarms( ANF). In this paper, by considering

a fixed sampling interval (uniform sampling scheme), we calculate the average

cost of the cycle and compare our findings with the average cost in the case of

non-uniform sampling. To calculate cost functions for uniform and non-uniform

sampling schemes, this study has presented and proved the formulas based on

multiple assignable causes and in the case of uniform and non-uniform sampling

schemes. To construct economic statistical design, we used a penalty approach,

and both the statistical properties and optimization of loss cost have been consid-

ered simultaneously.

The structure of this paper is as follows. In the second Section, some essen-

tial points are given about X Control Chart under Weibull In-Control Times. In

section three, some necessary points are given. In the fourth part, a cost model
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offered with multiple assignable causes with non-uniform and uniform sampling

schemes. In this section integrated cost model with three different loss functions

also were presented. Section 5 includes the economic statistical design. Section

6 includes a real industrial example. The determination of input parameters and

optimizing cost model based on these input parameters by considering economic

and economic statistical designs are also presented in this section. The comparison

between the cost model under multiple assignable causes with uniform and non-

uniform schemes are also presented in Section six. Finally, a summary appears in

the last section.

2. X Control Chart under Weibull In-Control

Times

When designing a control chart, one usually assumes the measurements within

the sample are independently distributed. However, this assumption may not be

tenable for some specic processes. Yang and Hancock (1990) assume that each

subgroup (samples of size n from X in sampling intervals) is a realization of the

random vector,X = X1, X2, X3, ..., Xn , which has the multivariate normal distri-

bution N(µ, V ), where µ is the vector of mean values and V = Vij , i, j = 1, 2, ..., n

, is the covariance matrix. In addition, , is the correlation matrix and σ is the

process standard deviation.

Lemma 2.1. In the case of correlated samples assumptions, the sample mean X

can be shown to be normally distributed with mean and variance as follows:

E(X) = µ (2.1)

V (X) = σ2

n [1 + (n− 1)ρ] (2.2)

where

ρ =

∑
i 6=j rij

n(n− 1)
(2.3)

the proof is given bellow

Proof. Recall that the X ∼ N(µ, V ), with V = σ2R is the process variance and R
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is the correlation matrix.

V ar(X) = 1
n2 [

∑n
i=1 V ar(Xi) +

∑
i 6=j Cov(Xi, Xj)] = 1

n2 [nσ2 +
∑
i 6=j Vij ]

= 1
n2 [nσ2 + σ2{

∑
i 6=j rij}]

Let ρ =
∑
i6=j rij

n(n−1) then

V ar(X) =
1

n2
[nσ2 + σ2n(n− 1)ρ]V ar(X) =

σ2

n
[1 + (n− 1)ρ]

In this paper we have S assignable causes affected the process. It is assumed

that the time of being in control until ith assignable cause occurs follows a Weibull

distribution with bellow probability density function and increasing hazard rate:

fi(t) = λikt
k−1exp(−λitk).( t > 0, k ≥ 1, λi > 0), i = 1, 2, ..., s. (2.4)

ri(t) = λikt
k−1 (2.5)

where k is shape parameter and λi is scale parameter. Note that when k = 1, fi(t)

becomes exponential distribution with ri(t) = λi. The process is monitored by

taking samples of size n from X at time intervals h1 h1 + h2 h1 + h2 + h3 and so

on. In this case is jth sampling interval and we have h1 ≥ h2 ≥ h3, ....
Where

Wj = Σji=1hi (2.6)

Lemma 2.2. Let hj is the jth sampling interval. Then to keep the probability of

shift from a control state fixed for all intervals, we have

hj = [j
1
k − (j − 1)

1
k ]h1 (2.7)
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Proof. ∫ ωj+1

ωj
ri(t) dt =

∫ h1

ω0
ri(t) dt, j = 1, 2, ....∫ ωj+1

ωj
λikt

k−1(t) dt =
∫ h1

ω0
λikt

k−1(t) dt = ωkj+1 − ωkj = hk1

Ifj = 1 : ωk2 = ωk1 + hk1 ⇒ ω2 = 2

1

k h1

Ifj = 2 : ωk3 = ωk2 + hk1 ⇒ ω3 = 3

1

k h1
...

⇒ ωj = j

1

k h1

But

hj = ωj − ωj−1

hj = [j

1

k − (j − 1)

1

k ]h1, j = 1, 2, ....

Lemma 2.3. The probability density function of occurrence of multiple assignable

causes follows Weibull distribution.

f0(t) = λ0kt
k−1exp(−λ0tk).( t > 0, k ≥ 1, λ0 > 0) (2.8)

where λ0 =
∑
λi, i = 1, 2, ..., s.

Proof. We assumed that S assignable causes affected the process and the occur-

rence time of any assignable cause follows Weibull distribution. It is also assumed

that after the occurrence of the ith assignable cause, until the discovery of the

ith assignable cause, the process will not disturb by any other assignable causes.

Thus, if the time until occurrence of assignable causes noted by T
′

1, T
′

2, ..., T
′

S then

the probability of being in control at time is:

P (T
′
> t) = P (min(T

′

1, T
′

2, ..., T
′

S) > t) = exp−λ0t
k

where λ0 =
∑
λi, i = 1, 2, ..., s.

Lemma 2.4. The probability of the occurrence of the ith assignable cause before

the other assignable causes is

λi
λ0

(2.9)
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Proof. if Ci is the event of the occurrence of ith assignable cause, then:

Ci = [Ai = U ] = [Ai < min(A1, A2, ..., Ai−1, Ai+1, ..., As)]

then if we have R = min(A1, A2, ..., Ai−1, Ai+1, ..., As)

FAi(r) = 1− exp(−λirk)

fR(r) = k(λ0 − λi)rk−1exp(−(λ0 − λi)rk)

We have:

P (Ci) = P [Ai < R] =

∫ ∞
0

P (Ai < R | R = r)fR(r) dr

=

∫ ∞
0

P (Ai < r)fR(r) dr

=

∫ ∞
0

FAi(r)fR(r) dr

=

∫ ∞
0

k(λ0 − λi)rk−1exp(−(λ0 − λi)rk) dr

= 1−
∫ ∞
0

k(λ0 − λi)rk−1exp(−λ0rk) dr

=
λi
λ0

3. Performance indicators

There are several statistical measures to assess the performance of X control charts

for correlated data under Weibull shock model, such as:

1. Adjusted Average Time to Signal (AATS) is defined as the average time from

when the process shifts until the chart gives an out-of-control signal.

2.The ANF is defined as the expected number of false alarms.

3.The ANS0 is defined as the expected number of samples in the in control period.

We need to define the following terms to calculate the Performance indicators.

1. pij is the conditional probability that ith assignable cause will occur during jth
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sampling interval , given that ith assignable cause not occur at time ωj−1.

pij =

∫ ωj
ωj−1

fi(t) dt∫∞
ωj−1

fi(t) dt
(3.10)

=
exp(−λiωkj−1)− exp(−λiωkj )

exp(−λiωkj−1)
(3.11)

= 1− exp(−λi(jhk1)

let pij = pi , for (i = 1, 2, ..., S), (j = 1, 2, ...).

According to the above formula, we consider p0j as the conditional probability

that multiple assignable causes will occur during jth sampling interval given that

multiple assignable causes do not occur at time ωj−1. We obtain

p0j = 1− e−λ0h
k
1 , j = 1, 2, ... (3.12)

Here we assumed p0j = p0.

2. We consider qij as the unconditional probability that ith assignable cause will

occur during jth sampling interval and the process is going to out of control.

qij =

∫ ωj

ωj−1

fi(t) dt = e−λiω
k
j−1 − e−λiω

k
j = (1− pi)j−1pi (3.13)

3. Suppose that τij be the expected time of the in control period within

sampling interval hj , given that ith assignable cause has occurred during this

period.

τij = E(T − ωj−1 | ωj−1 < T < ωj) =

∫ ωj
ωj−1

(t− ωj−1)fi(t) dt

qij
(3.14)

Lemma 3.1. The expected (the time that process be under control) during any

one sampling interval is as follows:

τi = (
1

λi
)

1

k Γ(1 +
1

k
)− h1pi(1− pi)A(1− pi) (3.15)

where for |x| < 1

A(X) =

∞∑
j=0

(j + 1)
1
kXj (3.16)

Proof.

τi =

∞∑
j=1

τijqij =

∞∑
j=1

∫ ωj

ωj−1

tfi(t) dt−
∞∑
j=1

qijωj−1

= (
1

λi
)

1

k Γ(1 +
1

k
)− h1pi(1− pi)A(1− pi)
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Lemma 3.2. Let AATS be the average time from when the process shifts until

the chart gives an out-of-control signal. It is equal to:

AATS = Σ(
λi
λ0

)AATSi (3.17)

where AATSi be the average time between occurrence shifts in process mean owing

to the ith assignable cause and receiving right alarm from control chart:

AATSi = h1piA(1− pi) +
βih1pi[piA(1− pi)− (1− βi)A(βi)]

1− pi − βi
− (

1

λi
)

1
kΓ(1 +

1

k
)

(3.18)

Proof.

AATSi =

∞∑
j=1

[

∞∑
k=1

qij [ωk+j−1 − ωj−1]βk−1i (1− βi)]− τi

=

∞∑
j=1

[

∞∑
k=1

(1− pi)j−1pi[ωk+j−1 − ωj−1]βk−1i (1− βi)]− τi

= (1− βi)pi
∞∑
j=1

[

∞∑
k=1

[(1− pi)j−1ωk+j−1βk−1i︸ ︷︷ ︸− (1− pi)j−1ωj−1βk−1i︸ ︷︷ ︸]]− τi
For the first part, we have:

I =

∞∑
j=1

∞∑
k=1

(1− pi)j−1ωk+j−1βk−1i =

∞∑
l=1

ωlβ
l
i

l∑
j=1

(1− pi)−1(
1− pi
βi

)j

= (
1

1− pi
)

∞∑
l=1

ωlβ
l
i(

1− pi
βi − 1 + pi

)− (
1

1− pi
)

∞∑
l=1

ωl(
(1− pi)l+1

βi − 1 + pi
)

= (
h1

pi + βi − 1
)(βiA(βi)− (1− pi)A(1− pi))

For the second part, we have:

II =

∞∑
j=1

∞∑
k=1

(1− pi)j−1ωj−1βk−1i =

∞∑
j=1

(1− pi)j−1ωj−1
∞∑
k=1

βk−1i =
h1(1− pi)

1− βi
A(1− pi)

By substituting and simplifying, final formula is obtained.

In X control chart with correlated data the probability of Type II error is cal-

culated as follows:

βi =

∫ L−δi
√
n

0

1√
2π
exp(−1

2
x2)dx−

∫ −L−δi√n
0

1√
2π
exp(−1

2
x2)dx (3.19)
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The concept of AATSi is presented well in Figure 1.

Lemma 3.3. Let is ANS0 defined as the expected number of samples in the in

control period. It is equal to:

ANS0 =
1− p0
p0

(3.20)

Proof. If is the event of the occurrence of single assignable cause, then the expected

number of samples in the in control period calculated as follows:

E(Number of samples are taken before shift) =

∞∑
j=0

jP (A ∈ (jh, (j + 1)h)

=

∞∑
j=0

j(e−λ0jh
k
1 − e−λ0(j+1)hk1 ) =

e−λ0h
k
1

1− e−λ0hk1

We obtain before: p0 = 1− e−λ0h
k
1 .

The expected number of false alarms generated during a cycle is times the

expected number of samples taken before the shift, or

ANF = αANS0 (3.21)

In X control chart with correlated data the probability of Type I error is calculated

as follows:

α = 2

∫ ∝
L

1√
2π
exp(−1

2
x2)dx (3.22)

4. Development of cost model

4.1 Model Assumptions

To create a cost model, we should consider the following assumptions:

1. The output of the process has a normal distribution with constant mean and

variance.

2. When the process is under control, µ = µ0 .

3. It is assumed that assignable causes occur based on the Weibull distribution.

By assuming that the process begins with the state of control, the time which

process be under control has a Weibull distribution.

4. Assignable causes occur independently.

5. Multiple assignable causes produce ”step changes” in the process mean from
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µ = µ0 to a µ = µ0 + δiσ.

6. In this article, the shift that occurred in the process mean is noted by δi. Three

distributions, uniform, negative exponential and half-normal, are considered as a

prior for δi. Considering these distributions as the prior would cover all values of

δi in a real industry.

7. The process is not self-correcting. That is, once a transition to an out-of-control

state has occurred, the process can be returned to the in-control condition only

by management intervention upon appropriate corrective actions.

8. The quality cycle starts with the in-control state and continues until the pro-

cess is repaired after an out-of-control signal. It is assumed that the quality cycle

follows a Renewal Reward Process.

9. During the search for an assignable cause, the process is shut down.

10. Each subgroup (samples of size n from X in each sampling interval) is a

realization of the random vector, X = X1, X2, ..., Xn , which has the multi-

variate normal distribution N(µ, V ), where µ is the vector of mean values and

V = Vij , i, j = 1, 2, ..., n , is the covariance matrix.

To facilitate exposition, all notations used throughout this paper are summarized

below:

Z0: Average time to search for a false alarm.

Z1: Average time to discover assignable cause once it is detected by the control

chart.

Z2i: Average time to repair ith assignable cause after it has been discovered.

D0: Average cost per unit of time while the process in control.

D1i: Average cost per unit of time while the process is out of control owing to the

occurrence of the ith assignable causes

J0: In control cost obtained by considering loss function.

J1i: Out of control cost obtained by considering loss function.

Y : The average cost per false alarm when the process is under control.

Wi: Cost to locate and repair the ith assignable cause.

a: Fixed sample cost.

b: Unit sample cost

P : Production rate.

σ: Standard deviation of the process.

λi: Weibull Scale parameter

k: Weibull Shape parameter

n: Sample size
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h: Sampling interval

L: Control limits coefficient

ρ: Average correlation factor within samples

4.2 Cost function in the case of non-uniform sampling

In practice, each process starts from in control state. Then because of the occur-

rence of one assignable cause, it goes out of control state. It is clear that after

repairing and fixing the assignable cause, the process returns to the initial state.

This cycle is called quality cycle and its model follows the form of a Renewal Re-

ward Process where the average cost per unit time for the cycle E(A) is calculated

by the average cost per cycle E(C) divided by the average time per cycle E(T ) .

In economic design, the purpose is optimizing without any constraint and finding

optimal values for sampling interval, sample size, and control limits coefficient.

The average time that the process is in control is:

(
1

λ0
)

1

k Γ(1 +
1

k
) + Z0ANF (4.23)

The average time of cycle is:

E(T ) = (
1

λ0
)

1

k Γ(1 +
1

k
) + Z0ANF +AATS + Z1 + Σ(

λi
λ0

)Z2i (4.24)

For better understanding of E(T ) one can see Figure 1.

The average cost of cycle is:

E(C) = D0(
1

λ0
)

1

k Γ(1 +
1

k
) + Y ANF +

s∑
i=1

λi
λ0
D1iAATSi +

s∑
i=1

λi
λ0
wi (4.25)

+ (a+ bn)

s∑
i=1

λi
λ0

(
1

p0
+

βi
1− βi

)

For better understanding of E(C) one can see Figure 1.

4.3 Cost function in the case of uniform sampling

To evaluate the relative benefits of non-uniform sampling plan in comparison with

uniform sampling plan under multiple assignable causes cost model, and by con-

sidering fixed sampling interval, we calculate average time and the average cost
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Figure 1: Quality Cycle

for the cycle and analyze them. If is a fixed sampling interval, then we can obtain

E(T ) as follows:

E(T ) = (
1

λ0
)

1

k Γ(1 +
1

k
) + Z0ANF +AATS + Z1 + Σ(

λi
λ0

)Z2i (4.26)

where

AATS =
s∑
i=1

λi
λ0
AATSi AATSi =

h

1− βi
− τi

τi = (
1

λ0
)

1

k Γ(1 +
1

k
)− hQi Qi =

∞∑
j=1

eλi(jh)
k

ANF = αQ,Q =

∞∑
j=1

eλ0(jh)
k

We also obtain E(C) as fallows:

E(C) = D0(
1

λ0
)

1

k Γ(1 +
1

k
) + Y ANF +

s∑
i=1

λi
λ0
D1iAATSi +

s∑
i=1

λi
λ0
wi (4.27)

+ (a+ bn)

s∑
i=1

λi
λ0

(
1

1− βi
) + (a+ bn)Q
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4.4 Improvement of Cost function by using loss function

In the traditional formulation of economic design models, the costs due to non-

conformities when the process is in-control (D0) and out-of-control (D1i) have

been treated as constants. In recent years, influenced in part by the popularity

of Taguchi methods in product design, the quality loss function concept has been

incorporated into various statistical decision models where the cost due to poor

quality needs to be estimated. In the traditional approach, the upper and lower

specification limits are used to classify the quality of the process output as ei-

ther acceptable or non-acceptable, and products falling outside the specification

limits are considered to result in quality costs. In the loss function approach, the

probability distribution describing the observations for the quality characteristic is

explicitly taken into account in computing the costs resulting from variation of the

quality characteristic around its target. It is considered that cost of poor quality

is incurred whenever the quality characteristic is not on its target; hence, prod-

ucts that are not produced on-target incur cost even though they may conform to

specification limits. Several researchers have applied the loss function approach in

the economic design of X control charts (Elsayed and Chen (1994); Moskowitz

and et al. (1994). In this paper, we propose the economic design of charts based

on linear, quadratic, and exponential loss functions.

We note that the appropriate type of the loss function to be used depends on the

particular industrial application. It is also possible that the relevant loss func-

tion may be different for negative and positive deviations from the target. Cain

and Janssen (1997) discuss a problem arising in the production of construction

panels made of glued and pressed wood chips. The moisture level can be reduced

by drying the panels longer in the gas dryers. The longer drying time requires

more fuel to be consumed; hence, there is a linear increase in cost as the moisture

content decreases. On the other hand, higher moisture increases the press time

which increases the total plant operating cost. Thus, the resulting cost function is

partly linear and partly quadratic. The cost increases quadratic when the mois-

ture content is higher than planned; however, the cost increases linearly when the

moisture content is lower than planned. Although, as in this example, the form

of the loss function for the quality characteristic may be region-dependent, in this

paper we will focus on the simpler and more common case where the loss function

is single-type and symmetric around the target value. But, if needed, these more

generalized (mixed type and asymmetric) loss functions can be easily incorporated

into our model. We remark that different types of loss functions can also be re-

garded as reflections of varying risk preferences of the users of control charts. In
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this case, the quality loss function is related to the user’s utility function.

4.4.1 Linear loss function

We first consider the linear loss function in which quality loss is a linear function

of the deviation of the quality characteristic from its target. Let T be the target

value for the quality characteristic monitored; we allow the possibility that T can

be different from µ0. Let the probability density function (pdf) of the quality

characteristic X be f(x). The quality loss is zero only when the quality character-

istic X equals the target T , and the loss increases as the deviation from the target

increases. If the loss function L(X) is asymmetric around the target, two different

loss coefficients C1 and C2 should be estimated such that the loss is calculated as

L(X) = C1(T −X)ifX ≤ T, (4.28)

C2(X − T )ifX > T. (4.29)

If we consider the symmetric loss functions and we assume that the loss coefficient

used for estimating the cost due to nonconformities C = C1 = C2, then the Linear

loss function is obtained as follows:

L(X) = C|T −X| (4.30)

Lemma 4.1. If Z is a Standard Normal random variable then:

E[|Z − a|] = 2[φ(a) + aΦ(a)]− a (4.31)

the proof is given bellow:

E[|Z − a|] =

∫ a

−∞
(a− z)φ(z)dz +

∫ ∞
a

(z − a)φ(z)dz

= 2aΦ(a)− a−
∫ a

−∞
z

1√
2π
e(
−z2

2
)dz +

∫ ∞
a

z
1√
2π
e(
−z2

2
)dz

= 2[φ(a) + aΦ(a)]− a

When the process is in the control state, quality characteristic has the Normal

distribution with the mean parameter µ0 and the variance parameter σ2, therefore

according to above lemma, and considering a0 + (T−µ0
σ , f(x) = (2πσ2)−0.5e

(x−µ20
2σ2

, and Φ(.) is the cumulative probability distribution function (cdf) for a standard

normal variable and φ(.) is the standard normal pdf. The expected quality cost

per unit when the process is in control, J0,is:

J0 = 2C[σφ(a0)− (µ0 − T )Φ(a0)]− C(µ0 − T ). (4.32)
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Let the out-of-control process mean be µ1i = µ0 + δiσ. Defining a1i = T−µi
σ , the

expected quality cost per unit when the process is out of control, J1i, according

to above formula is:

J1i = 2C[σφ(a1i)− (µ1i − T )Φ(a1i)] + C(µ1i − T ) (4.33)

If P units are produced per hour, we can compute D0 and D1i . Note that the

shift in mean δiσ explicitly enters the cost function through the term J1i when a

loss function is used for computing the quality costs.

4.4.2 Quadratic loss function

The most common loss function used in practice is the symmetric quadratic loss

function advocated by Taguchi. The quadratic loss function penalizes the devia-

tions from the target more severely than the linear loss function. Kim and Liao

(1994) suggest the liquid products in containers such as juice, soda, and medicine

as potential applications of the symmetric quadratic loss function. Product de-

livery time promised to customers is an example of an asymmetric quadratic loss

function. The actual delivery occurring earlier than the promised time incurs a

small loss, which is considerably less than the loss associated with a late delivery

resulting in customer dissatisfaction. Another example for the asymmetric loss is

the contents of a manufactured drug. The low amount of a particular ingredient

may make the drug ineffective, but the high level of the same ingredient may have

a serious negative effect on users, implying that positive deviation from the target

incurs a higher loss than the same amount of deviation below the target. Taguchi

loss function is presented below:

L(X) = C(X − T )2 (4.34)

If X is a random variable with the mean parameter µ and the variance parameter

σ2 then we have:

E(X − a)2 = V ar(X) + (E(X)− a)2 (4.35)

When the process is in the control state, quality characteristic has the Normal

distribution with the mean parameter µ and the variance parameter σ2, therefore

according above equation, we calculate J0 as

J0 = C[σ2 + (µ0 − T )2] (4.36)

The expected cost per unit under quadratic loss function when the process is out

of control is

J1i = C[σ2 + (µ0 − T )2 + δ2i σ
2 − 2δiσ(µ0− T )] (4.37)
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As in the case of linear loss function, the optimal design under quadratic loss

function can be found by first finding D0, D1 using above formulas, and then

substituting them in cost function.

4.4.3 Exponential loss function

Finally we consider the exponential loss function which corresponds to the case

of constant risk aversion if we assume that the utility of the decision maker is

measured by the negative of the quality loss Moskowitz and et al. (1994). The

linear loss function is suited to a risk-neutral decision maker whereas the quadratic

and exponential loss functions allow incorporation of risk aversion explicitly into

the model. The choice of a quadratic loss function implies that the decision maker

becomes less risk averse as the deviation of the quality characteristic from the

target increases. The exponential loss function implies that the utility of the

decision maker decreases exponentially as deviation from the target increases. The

Exponential loss function is:

L(X) = E[C(er|X−T |)− 1] (4.38)

Lemma 4.2. If Z is a Standard Normal random variable then:

E[|Z − a|] = 2[φ(a) + aΦ(a)]− a (4.39)

the proof is given bellow:

E(er|X−a|) =

∫ a

−∞
er(a−z)φ(z)dz +

∫ ∞
a

er(z−a)φ(z)dz (4.40)

= era
∫ a

−∞
e−rz

1√
2π
exp(

−z2

2
)dz + e−ra

∫ ∞
a

erz
1√
2π
exp(

−z2

2
)dz

= exp(
r2

2
[eraφ(a+ r) + e−ra(1− φ(a− r))]

When the process is in the control state, quality characteristic has the Normal

distribution with the mean parameter µ and the variance parameter σ2, therefore

according above lema, we calculate J0 as

J0 = E[C(er|X−T |)− 1] = CE[(er|σz+µ0−C|)− 1]

= C[exp(rσb0 +
(rσ)2

2
) + φ(b0 + rσ) + exp(−rσb0 +

(rσ)2

2
)(1− φ(b0 − rσ))− 1

(4.41)
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where b0 = T−µ0

σ and

J0 = Cexp(
(rσ2)

2
∗ [exp(r(T − µ0))Φ(b0 + rσ) + exp(r(µ0 − T ))

−exp(r(µ0 − T ))Φ(b0 + rσ)]− C (4.42)

when the process is out of the control, quality characteristic has Normal distri-

bution with the mean parameter µ1i = µ0 + δiσ and the variance parameter σ2 .

According to the above lemma we have:

J1i = Cexp( (rσ2

2 ) ∗ [exp(r(T − µ1i))φ((b1i + rσ))

+exp(r(µ1i − T ))− exp(r(µ1i)− T ))φ((b1i) + rσ]− C (4.43)

where b1i = T−µ1i

σ .

5. Economic-Statistical design

In statistical design and economic design of control charts, optimal performance

of design parameters obtained in terms of statistical and economic criteria, but

in economic statistical design, statistical and economic criteria considered jointly.

In this paper economic statistical design is derived based on minimizing average

cost per time and by considering maximum values for the adjusted average time

to signal (AATS) and average numbers of false alarm in the quality cycle (ANF ).

If we note the average cost of the cycle per time by E(A) and the set of economic

design parameters of X control charts by F, we can show the economic statistical

design of X control charts as follows:

F (n, h1, L) = Min E(A) (5.44){
AATS ≤ AATSu
ANF ≤ ANFu

Where AATSu and ANFu are the corresponding bounds of values of AATS

and ANF . It should be noted that according to the values obtained in economic

design, the upper limit of AATS was considered 1 and the upper limit of ANF

was considered 0.5.

6. Real Example and solution procedure

Here, an example is presented to illustrate the solution procedure of the economic

statistical design of the charts for correlated data Chou and et al. (2001). A
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Table 1: The D0 and D1 values based on three different loss functions

Linear Loss Quadratic Loss Exponential Loss

D0 24.80 D0 14.50 D0 33.15

D11 19.36 D11 23.13 D11 124.92

D12 17.24 D12 26.50 D12 116.30

D13 26.67 D13 30.13 D13 106.88

D14 38.15 D14 34.00 D14 96.60

D15 50.66 D15 38.13 D15 85.57

D16 62.75 D16 42.50 D16 74.12

D17 72.89 D17 47.13 D17 62.73

D18 79.79 D18 52.00 D18 52.02

D19 82.76 D19 57.13 D19 42.57

D110 81.90 D110 62.50 D110 34.86

plant, located in central Taiwan, produces grape juice, which is contained in glass

bottles. The target quantity of grape juice’ is 200 cm3 for each bottle. In the

production process, the grape juice is inserted into twelve bottles at a time, and

the twelve bottles of juice will be packed in a box later. Before the twelve bottles

of grape juice are packed, the inspector samples the first four bottles to check

whether the quantity of grape juice for each bottle is 200cm3 and X chart is ap-

plied to monitor the process of insertion. The subgroups, that is, the first four

bottles from the recent 100 successive boxes, are viewed as a random sample from

a multivariate distribution. Moreover, the vector of mean values is , the average

correlation factor is estimated to be 0.1.

Some of the fixed parameters including cost parameters (Y, a, b) and time parame-

ters (Z0, Z1) have been determined based on past experience. We also have ρ here

as a fixed parameter. In the model Wi is non-fixed cost parameters and Z2i is non-

fixed time parameter. Weibull distribution parameters (λi, k), shift parameter δi

and design parameters (n, h1, L) are also presented in the model. In the numerical

example, we assume: Y = 1500, a = 25, b = 25, Z0 = 1.35, Z1 = 1.35, ρ = 0.1, P =

50 The above parameters are not affected by the occurrence of different assignable

causes and the shift created in the mean process. In this paper, we need some

assumptions to estimate other parameters.

a) It is assumed X is quality characteristic, and assume that when the process is

in-control:

X ∼ N(µ0 = 1.5, σ0 = 0.2), T = 2, r = C = 1 (6.45)

D0, D1i is computed based on three kinds of loss function.

c) Suppose that δi = 1.75 is a base case. In this case, assume that Z2i = 2.5, wi =
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Table 2: Model input parameters

PDi Z2i wi λi

Ai δi NE Un HN NE Un HN NE Un HN NE Un HN

1 0.75 0.344 0.100 0.372 4.122 2.5 3.417 1237 750 1025 0.003 0.001 0.002

2 1 0.303 0.100 0.352 3.637 2.5 3.235 1091 750 971 0.002 0.001 0.002

3 1.25 0.268 0.100 0.328 3.210 2.5 3.016 963 750 905 0.002 0.001 0.002

4 1.5 0.236 0.100 0.301 2.833 2.5 2.767 850 750 830 0.002 0.001 0.002

5 1.75 0.208 0.100 0.272 2.500 2.5 2.500 750 750 750 0.002 0.001 0.002

6 2 0.184 0.100 0.242 2.206 2.5 2.224 662 750 667 0.001 0.001 0.001

7 2.25 0.162 0.100 0.212 1.947 2.5 1.947 584 750 584 0.001 0.001 0.001

8 2.5 0.143 0.100 0.183 1.718 2.5 1.678 515 750 504 0.001 0.001 0.001

9 2.75 0.126 0.100 0.155 1.516 2.5 1.424 455 750 427 0.001 0.001 0.001

10 3 0.112 0.100 0.130 1.338 2.5 1.190 401 750 357 0.001 0.001 0.001

750. Banerjee Rahim (1988) single assignable cause model is compared with our

multiple assignable causes model. Base case parameters are also considered for

single assignable cause model (w = 750, Z2 = 2.5, λ = 0.02, δ = 1.75, ρ = 0.1).

d) We assume that process is disturbed by ten assignable causes which produce

ten shifts amount in the process mean vector that is from 0.75 to 3 in steps of

0.25.

In this article, we noted the prior distribution for δi by PDi. As mentioned earlier

three distribution uniform, negative-exponential and half-normal are considered

as a prior for δi. Based case are considered for δi = 1.75. PD5 is the notation for

base case prior distribution. The amount of Weibull scale parameter are calculated

by the use of prior distributions. Other parameter formulas are.

Wi = (
PDi

PD5
)× 750 (6.46)

Z2i = (
PDi

PD5
)× 2.5 (6.47)

λi = (
PDi

PD5
)× λ5 (6.48)

Input parameters values are listed in Table 3. Determination of the optimal model

parameters is performed by minimizing loss cost under constraint through the

R software package Optim. By using this package general-purpose optimization

based on Nelder and Mead (1965), quasi-Newton and conjugate-gradient algo-

rithms is done.

In Table 4,5 and 6, the comparison between optimal values and loss cost for eco-

nomic statistical design by considering the non-uniform sampling and uniform

sampling scheme for different values of the Weibull distribution shape parame-



Minimum Loss Design of X Control Chart for Correlated . . . 121

ter under three different loss functions (Linear, Quadratic, and Exponential) are

given. As it is seen in Table 4,5 and 6 when we use economic statistical design,

the loss cost becomes greater when uniform sampling scheme is used instead of

non-uniform sampling scheme.

7. Conclusions

In this study, an approach was proposed for the design of a X control chart having

economic and statistical properties for a process in which the failure mechanism

obeys a Weibull shock model. This investigation mainly combined our cost model

with Yang and Hancock’s correlation model to develop an economic statistical

design model of X charts for processes with correlated data. In addition, Three

different loss functions (Linear, Quadratic, Exponential) were incorporated into

our economic statistical design of X control charts by redefining the in-control

and the out-of-control costs. The resulting model combines the advantages of

economic statistical design and loss function philosophy. In practice, multiple

assignable causes are more realistic than single ones. To provide more protection

for both consumers and producers, an economic statistical model of X control

chart integrated with three loss functions for correlated data under Weibull shock

model with multiple assignable causes was proposed and AATS and ANF have

derived and calculated to determine the optimal design parameters. The economic

statistical design with non-uniform and uniform sampling schemes are compared.

Based on the above comparison, the cost model with non-uniform sampling cost

has a lower cost than that with uniform sampling.
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