| تعداد نشریات | 61 |
| تعداد شمارهها | 2,227 |
| تعداد مقالات | 18,262 |
| تعداد مشاهده مقاله | 56,061,462 |
| تعداد دریافت فایل اصل مقاله | 29,053,447 |
A generation theorem for the perturbation of exponentially equicontinuous C₀-semigroups on locally convex spaces | ||
| Journal of Mathematics and Modeling in Finance | ||
| دوره 5، شماره 1، مهر 2025، صفحه 167-173 اصل مقاله (188.3 K) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22054/jmmf.2025.85197.1173 | ||
| نویسنده | ||
| Jawad Ettayb* | ||
| Regional Academy of Education and Training, Casablanca-Settat, Morocco | ||
| چکیده | ||
| In this paper, we study the well-posedness of the evolution equation of the form u'(t) = Au(t) + Cu(t), t ≥ 0 where A is the infinitesimal generator of an exponentially equicontinuous C₀-semigroup and C is a (possibly unbounded) linear operator in a sequentially complete locally convex Hausdorff space X. In particular, we demonstrate that if A generates an exponentially equicontinuous C₀-semigroup (T_A(t))_{t ≥ 0} satisfying p(T_A(t)x) ≤ e^{ωt}q(x) and C is a linear operator on X such that D(A) ⊂ D(C) and {K⁻¹(μ-ω)ⁿ(CR(μ, A))ⁿ; μ > ω, n ∈ ℕ} is equicontinuous, then the above-mentioned evolution equation is well-posed, that is, A + C generates an exponentially equicontinuous C₀-semigroup (T_{A+C}(t))_{t ≥ 0} satisfying p(T_{A+C}(t)x) ≤ e^{(ω+K)t}q(x). | ||
| کلیدواژهها | ||
| C₀-semigroups؛ continuous linear operators؛ locally convex spaces | ||
| مراجع | ||
|
[1] X.Q. Bui, N.D. Huy, V.T. Luong and N.V. Minh, A generation theorem for the perturbation of strongly continuous semigroups by unbounded operators, J. Differential Equations, 422 (2025), 489-499. [2] Y.H. Choe, C0-semigroups on a locally convex space, J. Math. Anal. Appl., 106 (1985), 293-320. [3] B. Dembart, Perturbation of semigroups of operators on locally convex spaces, Bull. Amer. Math. Soc., 79(5) (1973), 986-991. [4] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, 2000. [5] H. Komatsu, Semi-groups of operators in locally convex spaces, J. Math. Soc. Japan, 16 (1964), 230-262. [6] T. Komura, Semigroups of operators in locally convex spaces, J. Funct. Anal., 2(3) (1968), 258-296. [7] M. Kostic´, Generalized Semigroups and Cosine Functions, Math. Inst., Belgrade, 2011. [8] L. Narici and E. Beckenstein, Topological vector spaces, CRC Press, 2010. [9] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol. 44, Springer-Verlag, 1983. [10] R.S. Phillips, Perturbation theory for semigroups of linear operators, Trans. Amer. Math. Soc., 74 (1953), 199-221. [11] K. Singbal-Vedak, Semigroups of operators on a locally convex space, Comenn. Math., (1972), 53-74. [12] K. Yosida, Functional analysis, 2nd ed., Grundlehren math. Wiss., Band 123, SpringerVerlag, New York, 1968. | ||
|
آمار تعداد مشاهده مقاله: 2,180 تعداد دریافت فایل اصل مقاله: 142 |
||