[1] Black, F. and Scholes, M., The pricing of options and corporate liabilities, J. Political Econ.
81 (1973), no. 3, 637–654.
[2] Hull, J. C., Options, Futures, and Other Derivatives, 10th ed., Pearson, New York, 2018.
[3] Wilmott, P., Dewynne, J., and Howison, S., The Mathematics of Financial Derivatives: A
Student Introduction, Cambridge Univ. Press, 1995.
[4] Wang, R. R., Wang, Y. Y., and Dai, C. Q., Influence of higher-order nonlinear effects on
optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser, Opt.
Laser Tech. 152 (2022), 108103.
[5] Cao, Q. H. and Dai, C. Q., Symmetric and anti-symmetric solitons of the fractional second
and third-order nonlinear Schr¨odinger equation, Chin. Phys. Lett. 38 (2021), 090501.
[6] Dai, C. Q. and Wang, Y. Y., Coupled spatial periodic waves and solitons in the photovoltaic
photorefractive crystals, Nonlinear Dyn. 102 (2020), 1733–1741.
[7] Yuan, L., Ni, Y. Q., Deng, X. Y., and Hao, S., A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations, J.
Comput. Phys. 462 (2022), 111260.
[8] Aliyari Boroujeni, A., Pourgholi, R., and Tabasi, S. H., Solving inverse partial differential
equations problems by using teaching learning based optimization algorithm, TWMS J. Appl.
Engrg. Math. (2024).
[9] Aliyari Boroujeni, A., Pourgholi, R., and Tabasi, S. H., A new improved teaching-learningbased optimization (ITLBO) algorithm for solving nonlinear inverse partial differential equation problems, Comput. Appl. Math. 42 (2023), no. 99.
[10] Pourgholi, R., Dana, H., and Tabasi, H., Solving an inverse heat conduction problem using
genetic algorithm: Sequential and multi-core parallelization approach, Appl. Math. Model.
38 (2014), 1948–1958.
[11] Aliyari Boroujeni, A., Pourgholi, R., and Tabasi, S. H., Numerical solutions of KDV and
mKDV equations: Using sequence and multi-core parallelization implementation, J. Comput.
Appl. Math. 454 (2025), 116184.
[12] Tavella, D. and Randall, C., Pricing Financial Instruments: The Finite Difference Method,
Wiley, 2000.
[13] Boyle, P., Options: A monte carlo approach, J. Financial Econ. 4 (1977), no. 3, 323–338.
[14] Glasserman, P., Monte Carlo Methods in Financial Engineering, Springer, 2004.
[15] Zhang, P. G., Exotic options: a guide to second generation options, World Scientific, 1997.
[16] Gracianti, G., Computing Greeks by finite difference using Monte Carlo simulation and
variance reduction techniques, J. Math. Nat. Sci. 25 (2018), no. 1, 80–93.
[17] Anderson, D. F., An efficient finite difference method for parameter sensitivities of continuous time Markov chains, SIAM J. Numer. Anal. 50 (2018), no. 5, 2237–2258.
[18] Muroi, Y. and Suda, S., Computation of Greeks using binomial tree, J. Math. Finance 7
(2017), no. 3, 597–623.
[19] Jeong, D., Yoo, M., and Kim, J., Finite difference method for the Black-Scholes equation
without boundary conditions, Comput. Econ. 51 (2017), no. 4, 961–972.
[20] Bertram, D. and Fourni´e, M., High-order compact finite difference scheme for option pricing
in stochastic volatility models, J. Comput. Appl. Math. 236 (2012), no. 17, 4462–4473.
[21] Golbabai, A., Nikan, O., and Nikazad, T., Numerical analysis of time fractional BlackScholes European option pricing model arising in financial market, Comput. Appl. Math.
38 (2019), no. 173.
[22] Jeong, D., Yoo, M., Yoo, C., and Kim, J., A hybrid Monte Carlo and finite difference method
for option pricing, Comput. Econ. 53 (2019), 111–124.
[23] Peymany, M., Amiri, M., and Sokout, S. M., Option pricing using stochastic interest rate in
Tehran Stock Exchange, J. Financ. Manag. Perspect. 13 (2023), no. 41, 91–115.
[24] Peymany, M., Mathematical modeling of stock price behavior and option valuation, J. Math.
Model. Finance 1 (2021), no. 1, 113–129.
[25] Safdari-Vaighani, A., Ahmadian, D., and Javid-Jahromi, R., An approximation scheme for
option pricing under two-state continuous CAPM, Comput. Econ. 57 (2021), 1373–1385.
[26] Safdari-Vaighani, A., Heryudono, A., and Larsson, E., A radial basis function partition of
unity collocation method for convection-diffusion equations arising in financial applications,
J. Sci. Comput. 64 (2015), 341–367.