[1] H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6):716–723, 1974.
[2] S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.
[3] Y. Bao, J. Yue, and Y. Rao. A deep learning framework for financial time series using stacked
autoencoders and long short-term memory. PLoS ONE, 12(7):e0180944, 2017.
[4] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.
[5] A. Borovykh, S. Bohte, and C. W. Oosterlee. Conditional time series forecasting with convolutional neural networks. arXiv preprint arXiv:1703.04691, 2017.
[6] N. Boustani, A. Emrouznejad, R. Gholami, O. Despic, and A. Ioannou. Improving the predictive accuracy of the cross-selling of consumer loans using deep learning networks. Annals
of Operations Research, 339:613–630, 2023.
[7] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series Analysis: Forecasting and
Control. Wiley, 4th edition, 2008.
[8] P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer, 1991.
[9] D. A. Dickey and W. A. Fuller. Distribution of the estimators for autoregressive time series
with a unit root. Journal of the American Statistical Association, 74(366):427–431, 1979.
[10] F. X. Diebold and R. S. Mariano. Comparing predictive accuracy. Journal of Business &
Economic Statistics, 13(3):253–263, 1995.
[11] J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.
[12] E. F. Fama. Efficient capital markets: A review of theory and empirical work. The Journal
of Finance, 25(2):383–417, 1970.
[13] T. Fischer and C. Krauss. Deep learning with long short-term memory networks for financial
market predictions. European Journal of Operational Research, 270(2):654–669, 2018.
[14] J. Y. Franceschi, A. Dieuleveut, and M. Jaggi. Unsupervised scalable representation learning for multivariate time series. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.
[15] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
[16] A. Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.
[17] J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982.
[18] R. J. Hyndman and G. Athanasopoulos. Forecasting: Principles and Practice. OTexts, 2018.
[19] A. E. Khandani, A. J. Kim, and A. W. Lo. Consumer credit-risk models via machine-learning
algorithms. Journal of Banking & Finance, 34(11):2767–2787, 2010.
[20] Z. Li, B. Wang, and Y. Chen. Incorporating economic indicators and market sentiment effect
into US Treasury bond yield prediction with machine learning. Journal of Infrastructure,
Policy and Development, 8:7671, 2024.
[21] S. Makridakis, E. Spiliotis, and V. Assimakopoulos. Statistical and machine learning forecasting methods: Concerns and ways forward. PLOS ONE, 13(3):e0194889, 2018.
[22] S. Mohammad Almasarweh and S. AL Wadi. ARIMA model in predicting banking stock
market data. Modern Applied Science, 12(11):309–309, 2018.
[23] S. Moolchandani. Advanced credit risk assessment using Markov Chain Monte Carlo techniques. International Journal of Science and Research (IJSR), 13(4):7, 2024.
[24] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, and K.
Kavukcuoglu. WaveNet: A generative model for raw audio. arXiv preprint arXiv:1609.03499,
2016.
[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by backpropagating errors. Nature, 323:533–536, 1986.
[26] L. P. Masole, P. Sharon Nwanamidwa, M. Chanza, E. Munapo, and K. Mpeta. Modeling and
forecasting bank stock prices: GARCH and ARIMA approaches. In Intelligent Computing
and Optimization, pages 118–132. Springer, 2023.
[27] R. S. Tsay. Analysis of Financial Time Series. Wiley, 2nd edition, 2005.
[28] K. M. S. Uddin and N. Tanzim. Forecasting GDP of Bangladesh using ARIMA model.
International Journal of Business and Management, 16(6), 2021.
[29] J. Yao, J. Wang, B. Wang, B. Liu, and M. Jiang. A hybrid CNN-LSTM model for enhancing
bond default risk prediction. Journal of Computer Technology and Software, 3(6), 2024.
[30] Y. Yu, G. Kuang, J. Zhu, L. Shen, and M. Wang. Long-term interbank bond rate prediction
based on ICEEMDAN and machine learning. IEEE Access, 12:46241–46262, 2024.
[31] G. P. Zhang. Time series forecasting using a hybrid ARIMA and neural network model.
Neurocomputing, 50:159–175, 2003.