[1] B. B. Mandelbrot, The fractal geometry of nature, New York: WH freeman,1983.
[2] K. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley & Sons, 2004.
[3] A. A. Kirillov, A tale of two fractals, Birkhauser Basel, 2013.
[4] J. M. Blackledge, A. K. Evans, M. J. Turner, Fractal Geometry: Mathematical Methods, Algorithms, Applications, Elsevier, 2002.
[5] Y. B. Pesin, Dimension theory in dynamical systems: contemporary views and applications, University of Chicago Press, 2008.
[6] E. E. Peters, Fractal market analysis: applying chaos theory to investment and economics (Vol. 24), John Wiley & Sons 1994.
[7] G. Edgar, Measure, topology, and fractal geometry, Springer Science & Business Media, 2007.
[8] T. G. Dewey, Fractals in molecular biophysics, Oxford University Press, 1998.
[9] L. Pietronero, E. Tosatti, Fractals in physics, Elsevier; 2012.
[10] M. Fernandez-Martnez, M. A. Sanchez-Granero, Fractal dimension for fractal structures, Topology and its Applications, 163, (2014), 93-111.
[11] F. Family, T. Vicsek, Dynamics of fractal surfaces, World Scienti c Publishing Company, 1991.
[12] P. R. Massopust, Fractal functions, fractal surfaces, and wavelets, Academic Press, 2016.
[13] A. D. Ieva, ed., The fractal geometry of the brain, New York: Springer, 2016.
[14] G. A. Losa, D. Merlini, T. F. Nonnenmacher, E. R. Weibel, Fractals in Biology and Medicine, Birkhauser Basel, 2005.
[15] J. A. Kaandorp, P. Prusinkiewicz, Fractal Modelling: Growth and Form in Biology, Springer, 1994.
[16] U. Freiberg, M. Zahle, Harmonic calculus on fractals-a measure geometric approach I., Potential Anal, 16(2002), 265-77.
[17] R.S. Strichartz, Differential Equations on Fractals: A Tutorial; Princeton University Press: Princeton, NJ, USA, 2006.
[18] K. Falconer, Techniques in Fractal Geometry; John Wiley and Sons: Hoboken, NJ, USA, 1997.
[19] M. T. Barlow, E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab.Theory Relat. Fields, 79,(1988), 543623.
[20] F. H. Stillinger, Axiomatic basis for spaces with noninteger dimension, J. MathPhys., 18,(1977), 12241234.
[21] A. S. Balankin, A continuum framework for mechanics of fractal materials I: From fractional space to continuum with fractal metric, Eur. Phys. J. B, 88,(2015), 90.
[22] M. Zubair, M. J. Mughal, Q.A. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space, Springer: New York, NY, USA, 2012.
[23] L. Nottale, J. Schneider, Fractals and nonstandard analysis, J. Math. Phys.25,(1998), 12961300.
[24] T. G. Dewey, Fractals in molecular biophysics, Oxford University Press, 1998.
[25] M. Czachor, Waves along fractal coastlines: Fromfractal arithmetic to wave equations, Acta Phys. Pol. B 50 (2019), 813831.
[26] J. Kigami, Analysis on Fractals, Cambridge University Press, 2001.
[27] V.E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, elds and media, Springer Science Business Media, 2011.
[28] T. Sandev, Z. Tomovski, Fractional Equations and Models: Theory and Applications, Springer Nature, 2019.
[29] S. Das, Functional fractional calculus, Springer Science Business Media, 2011.
[30] V. V. Uchaikin, Fractional derivatives for physicists and engineers Vol. 1 Background and theory Application, vol. 2, Springer, Berlin (2013)
[31] A. A. Iliasov, M. I. Katsnelson, S. Yuan, Hall conductivity of a Sierpinski carpetPhy. Rev. B, 101(4), (2020), 045413.
[32] J. Wu, C. Wang, Fractal Stokes' Theorem Based on Integration on Fractal Manifolds, Fractals, 2019 https://doi.org/10.1142/S0218348X20500103
[33] M. Bohner, A.C. Peterson, eds., Advances in dynamic equations on time scales. Springer Science & Business Media, 2002.
[34] A. Parvate, A.D. Gangal, Calculus on fractal subsets of real line-I: formulation, Fractals, 17 (2009), 53-81.
[35] A. Parvate, A.D. Gangal, Calculus on fractal subsets of real line II: Conjugacy with ordinary calculus, Fractals 19(03) (2011), 271-290.
[36] A. K. Golmankhaneh, A. Fernandez, A. K. Golmankhaneh, D. Baleanu, Diffusionon middle- Cantor sets, Entropy, 20(504), (2018), 1-13.
[37] A. K. Golmankhaneh, D. Baleanu, Non-local Integrals and Derivatives on Fractal Sets with Applications, Open Physics, 14(1) (2016), 542-548.
[38] A. K. Golmankhaneh, A review on application of the local fractal calculus, Num.Com. Meth. Sci. Eng., 1(2) (2019), 57-66.
[39] A. K. Golmankhaneh, D. Baleanu, Diffraction from fractal grating Cantor sets, Journal of Modern Optics, 63(14) (2016), 1364-9.
[40] A. K. Golmankhaneh, A.S. Balankin, Sub-and super-diffusion on Cantor sets: Beyond the paradox, Phys. Lett. A., 382(14) (2018), 960-7.
[41] A. K. Golmankhaneh, C. Tunc, Stochastic differential equations on fractal sets, Stochastics, 4 (2019), 1-7, https://doi.org/10.1080/17442508.2019.1697268.
[42] A. K. Golmankhaneh, A. Fernandez, Random Variables and Stable Distributions on Fractal Cantor Sets, Fractal Fract. 3(2) 31,(2019), 1-13, https://doi.org/10.3390/fractalfract3020031.
[43] A. K. Golmankhaneh, C. Cattani, Fractal Logistic Equation, Fractal Fract , 3(3) 41,(2019) https://doi.org/10.3390/fractalfract3030041
[44] A. K. Golmankhaneh, C. Tunc, Sumudu transform in fractal calculus, Appl.Math. Comput., 350, (2019), 386-401.
[45] A. Parvate, A. D. Gangal, Fractal differential equations and fractal-time dynamical systems, Pramana, 64(3), (2005), 389-409.
[46] M. F. Shlesinger, Fractal time in condensed matter, Annu. Rev. Phys. Chem., 39(1),(1988), 269-290.
[47] M. F. Shlesinger, Williams-Watts dielectric relaxation: a fractal time stochastic process, J. Stat. Phys., 36(5-6), (1984), 639-648.
[48] G. Braden, Fractal Time: The Secret of 2012 and a New World Age: Hay House Inc, (2010).
[49] K.Welch, A Fractal Topology of Time: Deepening into Timelessness, Fox Finding Press; 2nd Edition, 2020.
[50] A. K. Golmankhaneh, S. Ashra , D. Baleanu, A. Fernandez, Brownian Motion on Cantor Sets, Int.J. Nonlin. Sci. Num, 2020, DOI: https://doi.org/10.1515/ijnsns-2018-0384.
[51] A. C. Chiang, Fundamental methods of mathematical economics, 1984.
[52] A. Takayama, Mathematical economics, Cambridge University Press, 1985.
[53] D. Cohen-Vernik, A. Pazgal, Price adjustment policy with partial refunds, J. Retail, 93(4)(2017), 507-26.
[54] V.E. Tarasov, On History of Mathematical Economics: Application of Fractional Calculus, Mathematics,7 (2019) 509.
[55] I. Tejado, E. Perez, D. Valerio, Fractional Derivatives for Economic Growth Modelling of the Group of Twenty: Application to Prediction, Mathematics, 8(1), (2020) 50.
[56] B. Acay, E. Bas, T. Abdeljawad, Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos, Solitons & Fractals, 130 (2020), 109438.
[57] A. Giusti, A comment on some new de nitions of fractional derivative. Nonlinear Dyn., 93(3),(2018) 1757-1763.
[58] K. Diethelm, R. Garrappa, A. Giusti, M. Stynes, Why fractional derivatives with nonsingular kernels should not be used, Fract. Calc. Appl. Anal., 23(3),(2020) 610-634.
[59] V.E. Tarasov, No nonlocality. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 62,(2018) 157-163.
[60] V.E. Tarasov, V.V. Tarasova, Macroeconomic models with long dynamic memory: Fractional calculus approach, Appl. Math. Comput., 338,(2018) 466-486.
[61] R. DiMartino, W. Urbina, On Cantor-like sets and Cantor-Lebesgue singular functions, arXiv preprint arXiv:1403.6554 (2014).
[62] V.E. Tarasov, Mathematical Economics: Application of Fractional Calculus, Mathematics, 8 (2020) 660.
[63] V.V. Tarasova, V.E. Tarasov, Concept of Dynamic Memory in Economics, Commun. Nonlinear Sci. Numer. Simul., 55 (2018) 127-145.
[64] V.E. Tarasov, Fractional econophysics: Market price dynamics with memory effects, Physica A: 557(1) (2020) 124865.
[65] M. Takayasu, H. Takayasu, Fractals and economics. Complex Systems in Finance and Econometrics, (2009) 444-463.
[66] H. Takayasu, M., Takayasu, M.P. Okazaki, K. Marumo, T. Shimizu, Fractal properties in economics. arXiv preprint (2000) cond-mat/0008057.
[67] La Torre, D., Marsiglio, S., Privileggi, F. Fractal attractors in economic growth models with random pollution externalities, Chaos, 28 (2018) 055916.