Bode, C., & Wagner, S. M. (2015). Structural drivers of upstream supply chain complexity and the frequency of supply chain disruptions. Journal of operations Management, 36, 215-228.
Chen, C., & Morris, S. (2003). Visualizing evolving networks: minimum spanning trees versus pathfinder networks. Paper presented at the Symposium on Information Visualization (IEEE Cat. No.03TH8714), 19-21 Oct. 2003, USA, 67-74.
Costa, A. S., Govindan, K., & Figueira, J. R. (2018). Supplier classification in emerging economies using the ELECTRE TRI-nC method: A case study considering sustainability aspects.
Journal of Cleaner Production, 201, 925-947. doi:
https://doi.org/10.1016/j.jclepro.2018.07.285
Ding, S., Jia, H., Du, M., & Xue, Y. (2018). A semi-supervised approximate spectral clustering algorithm based on HMRF model.
Information Sciences, 429, 215-228. doi:
https://doi.org/10.1016/j.ins.2017.11.016
Kim, Y., Chen, Y.-S., & Linderman, K. (2015). Supply network disruption and resilience: A network structural perspective. Journal of operations Management, 33, 43-59.
Mellat Parast, M. (2020). The impact of R&D investment on mitigating supply chain disruptions: Empirical evidence from U.S. firms.
International Journal of Production Economics, 227, 107671. doi:
https://doi.org/10.1016/j.ijpe.2020.107671
Partl, C., Gratzl, S., Streit, M., Wassermann, A. M., Pfister, H., Schmalstieg, D., & Lex, A. (2016). Pathfinder: Visual analysis of paths in graphs. Paper presented at the Computer Graphics Forum.
Pettit, T. J., Croxton, K. L., & Fiksel, J. (2019). The Evolution of Resilience in Supply Chain Management: A Retrospective on Ensuring Supply Chain Resilience. Journal of Business Logistics, 40(1), 56-65.
Poudel, S. R., Marufuzzaman, M., & Bian, L. (2016). Designing a reliable bio-fuel supply chain network considering link failure probabilities.
Computers & Industrial Engineering, 91, 85-99. doi:
https://doi.org/10.1016/j.cie.2015.11.002
Pournader, M., Rotaru, K., Kach, A. P., & Hajiagha, S. H. R. (2016). An analytical model for system-wide and tier-specific assessment of resilience to supply chain risks. Supply Chain Management: An International Journal, 21(5), 589-609. doi:doi:10.1108/SCM-11-2015-0430
Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on pattern analysis and machine intelligence, 22(8), 888-905.
Sokolov, B., Ivanov, D., Dolgui, A., & Pavlov, A. (2016). Structural quantification of the ripple effect in the supply chain. International Journal of Production Research, 54(1), 152-169. doi:10.1080/00207543.2015.1055347
Tomaskovic-Devey, D., Leiter, J., & Thompson, S. (1994). Organizational survey nonresponse. Administrative Science Quarterly, 439-457.
Tukamuhabwa Rwakira, B., Busby, J., & Stevenson, M. (2015). Supply chain resilience: a case study analysis of a supply network in a developing country context. (Ph.D), Lancaster University.
Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17(4), 395-416.
Xu, S., Zhang, X., Feng, L., & Yang, W. (2020). Disruption risks in supply chain management: a literature review based on bibliometric analysis. International Journal of Production Research, 58(11), 3508-3526. doi:10.1080/00207543.2020.1717011