Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of econometrics, 6(1), 21-37.
Assani, S., Jiang, J., Assani, A., & Yang, F. (2019). Estimating and decomposing most productive scale size in parallel DEA networks with shared inputs: A case of China's Five-Year Plans. arXiv preprint arXiv:1910.03421.
Banker, R. D., & Thrall, R. M. (1992). Estimation of returns to scale using data envelopment analysis. European Journal of operational research, 62(1), 74-84.
Baumol, W. J., Panzar, J. C., & Willig, R. D. (1983). Contestable markets: An uprising in the theory of industry structure: Reply. The American Economic Review, 73(3), 491-496.
Bhatia, A., & Mahendru, M. (2018). Assessment of Revenue Efficiency and Return to Scale of Indian Scheduled Commercial Banks. Assessment, 8(4).
Cesaroni, G., & Giovannola, D. (2015). Average-cost efficiency and optimal scale sizes in non-parametric analysis. European Journal of Operational Research, 242(1), 121-133.
Charnes, A., & Cooper, W. W. (1963). Deterministic equivalents for optimizing and satisficing under chance constraints. Operations research, 11(1), 18-39.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444
Cooper, W. W., Huang, Z., Lelas, V., Li, S. X., & Olesen, O. B. (1998). Chance constrained programming formulations for stochastic characterizations of efficiency and dominance in DEA. Journal of productivity analysis, 9(1), 53-79.
Färe, R., & Grosskopf, S. (1985). A nonparametric cost approach to scale efficiency. The Scandinavian Journal of Economics, 594-604.
Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281.
Førsund, F. R., & Hjalmarsson, L. (2004). Are all scales optimal in DEA? Theory and empirical evidence. Journal of Productivity Analysis, 21(1), 25-48.
Frisch, R. (1965). Theory of production. Theory of production.
Gong, B. H., & Sickles, R. C. (1992). Finite sample evidence on the performance of stochastic frontiers and data envelopment analysis using panel data. Journal of Econometrics, 51(1-2), 259-284.
Haghighatpisheh, H., Kordrostami, S., Amirteimoori, A., & Lotfi, F. H. (2019). Optimal scale sizes in input–output allocative data envelopment analysis models. Annals of Operations Research, 1-22.
Huang, Z., & Li, S. X. (2001). Stochastic DEA models with different types of input-output disturbances. Journal of Productivity Analysis, 15(2), 95-113.
Jahani Sayyad Noveiri, M., Kordrostami, S., & Amirteimoori, A. (2021). Sustainability Assessment and Most Productive Scale Size: a Stochastic DEA Approach with Dual Frontiers. Environmental Modeling & Assessment, 26(5), 723-735.
Kao, C., & Liu, S. T. (2019). Stochastic efficiency measures for production units with correlated data. European Journal of Operational Research, 273(1), 278-287.
Khanjani Shiraz, R. K., Hatami-Marbini, A., Emrouznejad, A., & Fukuyama, H. (2020). Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs. Operational Research, 20(3), 1863-1898.
Land, K. C., Lovell, C. K., & Thore, S. (1993). Chance‐constrained data envelopment analysis. Managerial and decision economics, 14(6), 541-554.
Liu, W., Wang, Y. M., & Lyu, S. (2017). The upper and lower bound evaluation based on the quantile efficiency in stochastic data envelopment analysis. Expert Systems with Applications, 85, 14-24.
Mehdizadeh, S., Amirteimoori, A., Charles, V., Behzadi, M. H., & Kordrostami, S. (2021). Measuring the efficiency of two-stage network processes: A satisficing DEA approach. Journal of the Operational Research Society, 72(2), 354-366.
Mitropoulos, P., Zervopoulos, P. D., & Mitropoulos, I. (2020). Measuring performance in the presence of noisy data with targeted desirable levels: evidence from healthcare units. Annals of Operations Research, 294(1), 537-566.
Piri, M., Lotfi, F. H., Rostamy-Malkhalifeh, M., & Behzadi, M. H. (2018). Evaluating decision making units with stochastic data by the multiplier model in DEA. Advances and Applications in Mathematical Sciences, 17(5), 385-400.
Podinovski, V. (2004). Efficiency and global scale characteristics on the “No free lunch” assumption only. Journal of Productivity Analysis, 22(3), 227-257.
Puri, J., & Yadav, S. P. (2016). A fully fuzzy DEA approach for cost and revenue efficiency measurements in the presence of undesirable outputs and its application to the banking sector in India. International Journal of Fuzzy Systems, 18(2), 212-226.
Ruggiero, J. (2004). Data envelopment analysis with stochastic data. Journal of the Operational Research Society, 55(9), 1008-1012.
Sahoo, B. K., Mehdiloozad, M., & Tone, K. (2014). Cost, revenue and profit efficiency measurement in DEA: A directional distance function approach. European Journal of Operational Research, 237(3), 921-931.
Sueyoshi, T. (1999). DEA duality on returns to scale (RTS) in production and cost analyses: an occurrence of multiple solutions and differences between production-based and cost-based RTS estimates. Management Science, 45(11), 1593-1608.