- Abdul‐Kader, W., Ganjavi, O., & Baki, F. (2011). A nonlinear model for optimizing the performance of a multi‐product production line. International Transactions in Operational Research, 18(5), 561-577.
- Alon, G., Kroese, D. P., Raviv, T., & Rubinstein, R. Y. (2005). Application of the cross-entropy method to the buffer allocation problem in a simulation-based environment. Annals of Operations Research, 134(1), 137-151.
- Altiparmak, F., Dengiz, B., & Bulgak, A. A. (2007). Buffer allocation and performance modeling in asynchronous assembly system operations: An artificial neural network metamodeling approach. Applied Soft Computing, 7(3), 946-956.
- Amiri, M., & Mohtashami, A. (2012). Buffer allocation in unreliable production lines based on design of experiments, simulation, and genetic algorithm. The International Journal of Advanced Manufacturing Technology, 62(1-4), 371-383.
- Aydilek, H., & Allahverdi, A. (2013). A polynomial time heuristic for the two-machine flowshop scheduling problem with setup times and random processing times. Applied Mathematical Modelling, 37(12), 7164-7173.
- Banks, J., Carson II, J. S., Automation, B., Nelson, B. L., & Nicol, D. M. (2005) Discrete-Event System Simulation FOURTH EDITION.
- Bekker, J. (2013). Multi-objective buffer space allocation with the cross-entropy method. International Journal of Simulation Modelling, 12(1), 50–61.
- Chehade, H., Yalaoui, F., Amodeo, L., & Dugardin, F. (2010, October). Buffers sizing in assembly lines using a Lorenz multiobjective ant colony optimization algorithm. In Machine and Web Intelligence (ICMWI), 2010 International Conference on (pp. 283-287). IEEE.
- Chung, C. A. (2000). Simulation modeling handbook: a practical approach.
- Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.
- Demir, L., Tunalı, S., Eliiyi, D. T., & Løkketangen, A. (2013). Two approaches for solving the buffer allocation problem in unreliable production lines. Computers & Operations Research, 40(10), 2556-2563.
- Diamantidis, A.C., Papadopoulos, C.T. (2009). Exact analysis of a two-station onebuffer flow line with parallel unreliable machines. European Journal of Operational Research 197, 572–580.
- Fallah-Jamshidi, S., Amiri, M., & Karimi, N. (2010). Nonlinear continuous multi-response problems: a novel two-phase hybrid genetic based metaheuristic. Applied Soft Computing, 10(4), 1274-1283.
- Ferreira, S. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., da Silva, E.P., Portugal L.A., Dos Reis P.S., Souza A.S., & Dos Santos, W. N. L. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica chimica acta, 597(2), 179-186.
- Gurel, S., & Akturk, M. S. (2007). Optimal allocation and processing time decisions on non-identical parallel CNC machines: ϵ-constraint approach. European Journal of Operational Research, 183(2), 591-607.
- Han, M. S., & Park, D. J. (2002). Optimal buffer allocation of serial production lines with quality inspection machines. Computers & Industrial Engineering, 42(1), 75-89.
- Hsieh, S. J. T. (2002). Hybrid analytic and simulation models for assembly line design and production planning. Simulation Modelling Practice and Theory, 10(1-2), 87-108.
- Hsieh, P. H., Yang, S. J., & Yang, D. L. (2015). Decision support for unrelated parallel machine scheduling with discrete controllable processing times. Applied Soft Computing, 30, 475-483.
- Huang, M. G., Chang, P. L., & Chou, Y. C. (2002). Buffer allocation in flow-shop-type production systems with general arrival and service patterns. Computers & Operations Research, 29(2), 103-121.
- Karimi, N., Zandieh, M., & Karamooz, H. R. (2010). Bi-objective group scheduling in hybrid flexible flowshop: a multi-phase approach. Expert Systems with Applications, 37(6), 4024-4032.
- Kim, S., & Lee, H. J. (2001). Allocation of buffer capacity to minimize average work-in-process. Production Planning & Control, 12(7), 706-716.
- Kolb, O., & Göttlich, S. (2015). A continuous buffer allocation model using stochastic processes. European Journal of Operational Research, 242(3), 865-874.
- Kose, S. Y., & Kilincci, O. (2015). Hybrid approach for buffer allocation in open serial production lines. Computers & Operations Research, 60, 67-78.
- Llerena, A. Malavasi, B. (2013). Hypothesis Test of a New Line Balancing Approach with Dynamic Allocation of Assembly Operation. University of Skovde, Bachelor Degree Projection.
- Lu, C., Xiao, S., Li, X., & Gao, L. (2016). An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Advances in Engineering Software, 99, 161-176.
- MacGregor Smith, J., & Cruz, F. R. B. (2005). The buffer allocation problem for general finite buffer queueing networks. Iie Transactions, 37(4), 343-365.
- Massim, Y., Yalaoui, F., Amodeo, L., Châtelet, É., & Zeblah, A. (2010). Efficient combined immune-decomposition algorithm for optimal buffer allocation in production lines for throughput and profit maximization. Computers & Operations Research, 37(4), 611-620.
- Mohammadi, S., Monfared, M. A. S., & Bashiri, M. (2017). An improved evolutionary algorithm for handling many-objective optimization problems. Applied Soft Computing, 52, 1239-1252.
- Mohtashami, A. (2014). A new hybrid method for buffer sizing and machine allocation in unreliable production and assembly lines with general distribution time-dependent parameters. The International Journal of Advanced Manufacturing Technology, 74(9-12), 1577-1593.
- Mor, B., & Mosheiov, G. (2014). Batch scheduling of identical jobs with controllable processing times. Computers & Operations Research, 41, 115-124.
- Nahas, N., Ait-Kadi, D., & Nourelfath, M. (2006). A new approach for buffer allocation in unreliable production lines. International journal of production economics, 103(2), 873-881.
- Oesterle, J., Bauernhansl, T., & Amodeo, L. (2016). Hybrid multi-objective optimization method for solving simultaneously the line balancing, equipment and buffer sizing problems for hybrid assembly systems. Procedia CIRP, 57, 416-421.
- Raman, N. A., & Jamaludin, E. K. R. (2008). Implementation of Toyota Production System (TPS) in the production line of a local automotive parts manufacturer. In Proceedings of International Conference on Mechanical, Manufacturing Engineering.
- Sabuncuoglu, I., Erel, E., & Gocgun, Y. (2006). Analysis of serial production lines: characterisation study and a new heuristic procedure for optimal buffer allocation. International Journal of Production Research, 44(13), 2499-2523.
- Scott, J. R. (1995). Fault tolerant design using single and multi-criteria genetic algorithms. Master's thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology.
- Shi, C., & Gershwin, S. B. (2009). An efficient buffer design algorithm for production line profit maximization. International Journal of Production Economics, 122(2), 725-740.
- Smith, J. M., Cruz, F. R., & Van Woensel, T. (2010). Topological network design of general, finite, multi-server queueing networks. European Journal of Operational Research, 201(2), 427-441.
- So, K. C. (1997). Optimal buffer allocation strategy for minimizing work-in-process inventory in unpaced production lines. IIE transactions, 29(1), 81-88.
- Tiacci, L. (2015). Simultaneous balancing and buffer allocation decisions for the design of mixed-model assembly lines with parallel workstations and stochastic task times. International Journal of Production Economics, 162, 201-215.
- Troitiño Malavasi, B. M., & Muñoz Llerena, A. (2013). Hypothesis test of a new line balancing approach with dynamic allocation of assembly operations.
- Tsadiras, A. K., Papadopoulos, C. T., & O’Kelly, M. E. (2013). An artificial neural network based decision support system for solving the buffer allocation problem in reliable production lines. Computers & industrial engineering, 66(4), 1150-1162.
- Uruk, Z., Gultekin, H., & Akturk, M. S. (2013). Two-machine flowshop scheduling with flexible operations and controllable processing times. Computers & Operations Research, 40(2), 639-653.
- Yamashita, H., & Altiok, T. (1998). Buffer capacity allocation for a desired throughput in production lines. IIE transactions, 30(10), 883-892.
- Zandieh, M., Joreir-Ahmadi, M. N., & Fadaei-Rafsanjani, A. (2017). Buffer allocation problem and preventive maintenance planning in non-homogenous unreliable production lines. The International Journal of Advanced Manufacturing Technology, 91(5-8), 2581-2593.
- Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications.
|