[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G.
Irving, M. Isard, et al., Tensorflow: A system for large-scale machine learning, In OSDI,
2016.
[2] D. S. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in deutsche
mark options, Review of financial studies, 9(1)(1996), pp. 69107.
[3] F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of
political economy, 81(3)(1973), pp. 637654.
[4] R. Cont, Empirical properties of asset returns: stylized facts and statistical issues, Quantitative Finance, 1(2)(2001), pp. 223236.
[5] R. Cont, J. d. Fonseca, and V. Durrleman, Stochastic models of implied volatility surfaces, Economic Notes, 31(2)(2002), pp. 361377.
[6] R. Culkin and S. R. Das, Machine learning in finance: the case of deep learning for option
pricing, Journal of Investment Management, 15(4)(2017), pp. 92100.
[7] M. F. Dixon, I. Halperin, and P. Bilokon, Machine learning in Finance, volume 1170,
Springer, 2020.
[8] C. Dugas, Y. Bengio, F. Belisle, C. Nadeau, and R. Garcia, Incorporating second-order
functional knowledge for better option pricing, Advances in neural information processing
systems, 13(2001).
[9] J. Gatheral, The volatility surface: A practitioners guide, John Wiley & Sons, 2006.
[10] P. Glasserman, Monte Carlo methods in financial engineering, Springer, 2004.
[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016.
[12] J. Heaton, N. G. Polson, and J. H. Witte, Deep learning in finance, arXiv preprint
arXiv:1602.06561, 2016.
[13] S. L. Heston, A closed-form solution for options with stochastic volatility with applications
to bond and currency options, Review of financial studies, 6(2)(1993), pp. :327343.
[14] J. C. Hull, Options, Futures and Other Derivatives, Pearson Education India, 2003.
[15] C.-F. Ivascu, Option pricing using machine learning, Expert Systems with Applications,
163(2021), pp. 113799.
[16] A. Jamnia, M. R. Sasouli, E. Heidouzahi, and M. Dahmarde Ghaleno, Application of
deep-learning-based models for prediction of stock price in the Iranian stock market, Journal
of Mathematics and Modeling in Finance, 2(1)(2022), pp. 151166.
[17] Z. Jiang, D. Xu, and J. Liang, A deep reinforcement learning framework for the financial
portfolio management problem, arXiv preprint arXiv:1706.10059, 2017.
[18] A. Ke and A. Yang, Option pricing with deep learning, Department of Computer Science,
Standford University, In CS230: Deep learning, 8 (2019), pp. 18.
[19] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, Self-normalizing neural
networks, In Advances in Neural Information Processing Systems, (2017)pp. 971980.
[20] S. Liu, A. Borovykh, L. Grzelak, and C. Oosterlee, A neural network-based framework
for financial model calibration, Journal of Mathematics in Industry 9(2019), pp. 1-28.
[21] R. Lord, R. Koekkoek, and D. Van Dijk, A comparison of biased simulation schemes for
stochastic volatility models, Quantitative Finance, 10(2)(2010), pp. 177194.
[22] B. B. Mandelbrot, The variation of certain speculative prices, Springer New York, 1997.
[23] V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines,
In Proceedings of the 27th international conference on machine learning (ICML-10)(2010),
pp. 807-814.
[24] K. Pakizeh, A. Malek, M. Karimzadeh Khosroshahi, and H. Hamidi Razi, Assessing
machine learning performance in cryptocurrency market price prediction, Journal of Mathematics and Modeling in Finance, 2(1)(2022), pp. 132.
[25] L. Qian, J. Zhao, and Y. Ma, Option pricing based on GA-BP neural network, Procedia
Computer Science, 199(2022), pp.13401354.
[26] J. Ruf and W. Wang, Neural networks for option pricing and hedging: a literature review,
arXiv preprint arXiv:1911.05620, 2019.