- Alizadehsani, R., Roshanzamir, M., Hussain, S., Khosravi, A., Koohestani, A., Zangooei, M. H., ... & Acharya, U. R. (2021). Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991–2020). Annals of Operations Research, 1-42.
- Bianchini, S., Müller, M., & Pelletier, P. (2022). Artificial intelligence in science: An emerging general method of invention. Research Policy, 51(10), 104604.
- Bird, Alexander, "Thomas Kuhn", The Stanford Encyclopedia of Philosophy (Spring 2022 Edition), Edward N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/spr2022/entries/thomas-kuhn/>.
- Boyle, D. (2021). Analysing AI via Husserl and Kuhn How a Phenomenological Approach to Artificial Intelligence Imposes a Paradigm Shift. In Responsible AI and Analytics for an Ethical and Inclusive Digitized Society: 20th IFIP WG 6.11 Conference on e-Business, e-Services and e-Society, I3E 2021, Galway, Ireland, September 1–3, 2021, Proceedings 20 (pp. 185-197). Springer International Publishing.
- Brunton, S. L., & Kutz, J. N. (2022). Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press.
- Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. WW Norton & Company.
- Ceccaroni, L., Bibby, J., Roger, E., Flemons, P., Michael, K., Fagan, L., & Oliver, J. L. (2019). Opportunities and risks for citizen science in the age of artificial intelligence. Citizen Science: Theory and Practice, 4(1).
- CERNa(2023). Facts and Figures. CERN. Retrieved April 28, 2023, from https://public-archive.web.cern.ch/en/lhc/Facts-en.html
- CERNb. (2023). AI at CERN. CERN Sparks. Retrieved April 28, 2023, from https://sparks.cern/index.php/ai-cern
- Chubb, J., Cowling, P., & Reed, D. (2022). Speeding up to keep up: exploring the use of AI in the research process. AI & society, 37(4), 1439-1457.
- Dessai, S. (2001). Climate prediction: a probabilistic approach. John Wiley & Sons.
- Domingos, P. (2015). The Master Algorithm: How the quest for the ultimate learning machine will remake our world. Basic Books.
- Du Pisani, J. A. (2006). Sustainable development–historical roots of the concept. Environmental sciences, 3(2), 83-96.
- Feder, A., Keith, K. A., Manzoor, E., Pryzant, R., Sridhar, D., Wood-Doughty, Z., ... & Yang, D. (2022). Causal inference in natural language processing: Estimation, prediction, interpretation and beyond. Transactions of the Association for Computational Linguistics, 10, 1138-1158.
- Fletcher, R. R., Nakeshimana, A., & Olubeko, O. (2021). Addressing fairness, bias, and appropriate use of artificial intelligence and machine learning in global health. Frontiers in Artificial Intelligence, 3, 561802.
- Funtowicz, S. O., & Ravetz, J. R. (1993). Science for the post-normal age. Futures, 25(7), 739-755.
- Funtowicz, S. O., & Ravetz, J. R. (1994). Uncertainty and quality in science for policy. Kluwer Academic Publishers.
- Gabriel, I. (2020). Artificial intelligence, values, and alignment. Minds and machines, 30(3), 411-437.
- Ghallab, M. (2019). Responsible AI: requirements and challenges. AI Perspectives, 1(1), 1-7.
- Gil, Y., Garijo, D., Khider, D., Knoblock, C. A., Ratnakar, V., Osorio, M., ... & Shu, L. (2021). Artificial intelligence for modeling complex systems: taming the complexity of expert models to improve decision making. ACM Transactions on Interactive Intelligent Systems, 11(2), 1-49.
- Gomes, C. P. (2020, May). AI for Advancing Scientific Discovery for a Sustainable Future. In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems (pp. 1-1).
- Gonzales-Martinez, R. (2021). Data-driven, theory-driven science: artificial realities and applications to savings groups. ResearchGate. https://www.researchgate.net/profile/Rolando-Gonzales-Martinez/publication/353193477_Data-driven_Theory-driven_Science_Artificial_Realities_and_Applications_to_Savings_Groups/links/60ec6c2e16f9f313007c0021/Data-driven-Theory-driven-Science-Artificial-Realities-and-Applications-to-Savings-Groups.pdf
- Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI) program. AI magazine, 40(2), 44-58.
- Guo, Y., Zhang, Y., Lyu, T., Prosperi, M., Wang, F., Xu, H., & Bian, J. (2021). The application of artificial intelligence and data integration in COVID-19 studies: a scoping review. Journal of the American Medical Informatics Association, 28(9), 2050-2067.
- Gusai, O. P., & Rani, A. (2022). Artificial Intelligence: Game Changer in Management Strategies. In Decision Intelligence Analytics and the Implementation of Strategic Business Management(pp. 45-52). Springer, Cham. World Economic Forum(2020). The Future of Jobs Report 2020. Available at: https://www.weforum.org/reports/the-future-of-jobs-report-2020/digest/
- Havrda, M. (2020). Artificial intelligence’s role in community engagement within the democratic process. International Journal of Community Well-Being, 3(4), 437-441.
- Hegde, J., & Rokseth, B. (2020). Applications of machine learning methods for engineering risk assessment–A review. Safety science, 122, 104492.
- Hermann, E. (2022). Artificial intelligence and mass personalization of communication content—An ethical and literacy perspective. New media & society, 24(5), 1258-1277.
- Hsu, Y. C., Verma, H., Mauri, A., Nourbakhsh, I., & Bozzon, A. (2022). Empowering local communities using artificial intelligence. Patterns, 3(3), 100449.
- Jarrahi, M. H., Askay, D., Eshraghi, A., & Smith, P. (2023). Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons, 66(1), 87-99.
- Khatib, O. (2017). Artificial intelligence in science and engineering. Communications of the ACM, 60(11), 72-82.
- King, I. (2017). Artificial intelligence in scientific discovery. Journal of the Royal Society Interface, 14(131), 20170397.
- Krenn, M., Pollice, R., Guo, S.Y. et al.On scientific understanding with artificial intelligence. Nat Rev Phys 4, 761–769 (2022). https://doi.org/10.1038/s42254-022-00518-3
- Krenn, Mario, et al. "On scientific understanding with artificial intelligence." Nature Reviews Physics4.12 (2022): 761-769.
- Lan, Lan, et al. "Generative adversarial networks and its applications in biomedical informatics." Frontiers in public health8 (2020): 164.
- Leslie, D. (2019). Understanding artificial intelligence ethics and safety. arXiv preprint arXiv:1906.05684.
- Liu, Y., & Yang, Y. (2020). Artificial intelligence in scientific discovery. Frontiers in Artificial Intelligence, 3(63), 1-17.
- Manyika, J. (2022). Getting AI right: Introductory notes on AI & society. Daedalus, 151(2), 5-27.
- Miller, G. J. (2022). Stakeholder roles in artificial intelligence projects. Project Leadership and Society, 3, 100068.
- Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bobes-Bascarán, J., & Fernández-Leal, Á. (2022). Human-in-the-loop machine learning: a state of the art. Artificial Intelligence Review, 1-50.
- Ng, A. (2017). Artificial intelligence and the future of science. Nature, 546(7657), 469-471.
- Ng, A. (2018). AI is the new electricity. O'Reilly Media.
- Olsson, C. B. (2018). Artificial intelligence in science: Current status, opportunities and challenges. Nature Communications, 9(1), 551.
- Odman, C. & Govender, K. (2021). As the world changes, science does too, and that's a good thing. Nairobi Law Monthly. https://nairobilawmonthly.com/as-the-world-changes-science-does-too-and-thats-a-good-thing/
- O'Reilly, T. (2017). The future of AI in science and research. Communications of the ACM, 60(11), 62-71.
- Pan, Y. (2016). Heading toward artificial intelligence 2.0. Engineering, 2(4), 409-413.
- Paolillo, A., Colella, F., Nosengo, N., Schiano, F., Stewart, W., Zambrano, D., ... & Floreano, D. (2022). How to compete with robots by assessing job automation risks and resilient alternatives. Science Robotics, 7(65), eabg5561.
- Peng, Y., Liu, E., Peng, S., Chen, Q., Li, D., & Lian, D. (2022). Using artificial intelligence technology to fight COVID-19: a review. Artificial Intelligence Review, 1-37.
- Peters, C., Higuera, A., Liang, S., Roy, V., Bajwa, W. U., Shatkay, H., & Tunnell, C. D. (2022). A Method for Quantifying Position Reconstruction Uncertainty in Astroparticle Physics using Bayesian Networks. arXiv preprint arXiv:2205.10305.
- Piorkowski, D., Park, S., Wang, A. Y., Wang, D., Muller, M., & Portnoy, F. (2021). How ai developers overcome communication challenges in a multidisciplinary team: A case study. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1-25.
- (2022, February 8). The James Webb Space Telescope has started collecting its next round of data. Popular Science. https://www.popsci.com/science/james-webb-space-telescope-next-data/
- Rathore, B., Mathur, M., & Solanki, S. (2022). An Exploratory Study on Role of Artificial Intelligence in Overcoming Biases to Promote Diversity and Inclusion Practices. Impact of Artificial Intelligence on Organizational Transformation, 147-164.
- Ravetz, J. R. (2007). Post-normal science. Environmental Science & Policy, 10(6), 553-560.
- Ravetz, I. R. (1999). What is post-normal science. Futures-the Journal of Forecasting Planning and Policy, 31(7), 647-654.
- Razack, H. I. A., Mathew, S. T., Saad, F. A., & Alqahtani, S. A. (2021). Artificial intelligence-assisted tools for redefining the communication landscape of the scholarly world. science editing, 8(2), 134-144.
- Rivers, T. J. (2002). Progress and technology: their interdependency. Technology in society, 24(4), 503-522.
- Sahi, S. M. (2022). The Artificial Intelligence and Its Global Economic Growth Impact. World Economics and Finance Bulletin, 9, 16-24.
- Sahu, M., Gupta, R., Ambasta, R. K., & Kumar, P. (2022). Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Progress in Molecular Biology and Translational Science, 190(1), 57-100.
- Sardar, Z. (2010). Welcome to postnormal times. Futures, 42(5), 435-444
- Schweyer, A. (2018). Predictive analytics and artificial intelligence in people management. Incentive Research Foundation, 1-18.
- Smith, C. J., & Wong, A. T. (2022, May). Advancements in artificial intelligence-based decision support systems for improving construction project sustainability: a systematic literature review. In Informatics (Vol. 9, No. 2, p. 43). MDPI.
- Stevens, R., Taylor, V., Nichols, J., Maccabe, A. B., Yelick, K., & Brown, D. (2020). Ai for science: Report on the department of energy (doe) town halls on artificial intelligence (ai) for science (No. ANL-20/17). Argonne National Lab. (ANL), Argonne, IL (United States).
- Tansley, S., & Tolle, K. M. (2009). The fourth paradigm: data-intensive scientific discovery (Vol. 1). A. J. Hey (Ed.). Redmond, WA: Microsoft research.
- Umbrello, S. (2019). Beneficial artificial intelligence coordination by means of a value sensitive design approach. Big Data and Cognitive Computing, 3(1), 5.
- Velarde, G. (2020). Artificial intelligence and its impact on the Fourth Industrial Revolution: A review. arXiv preprint arXiv:2011.03044.
- Wang, J., Chen, Y., & Yang, Y. (2018). Artificial intelligence in science: Opportunities and challenges. Frontiers in Artificial Intelligence, 1(9), 1-12.
- Wang, Y., Xiong, M., & Olya, H. (2020, January). Toward an understanding of responsible artificial intelligence practices. In Proceedings of the 53rd hawaii international conference on system sciences (pp. 4962-4971). Hawaii International Conference on System Sciences (HICSS).
- Warner, R., & Sloan, R. H. (2021). Making artificial intelligence transparent: Fairness and the problem of proxy variables. Criminal Justice Ethics, 40(1), 23-39.
- Weinberg, A. M. (1972). Science and trans-science. Science, 177(4045), 211-211.
- Wheeler, G. R., & Pereira, L. M. (2004). Epistemology and artificial intelligence. Journal of Applied Logic, 2(4), 469-493.
- Wield, D. (1997). Science, politics and ethics in the post-normal era. Science, Technology & Human Values, 22(1), 29-44.
- Xu, Yongjun, Xin Liu, Xin Cao, Changping Huang, Enke Liu, Sen Qian, Xingchen Liu et al. "Artificial intelligence: A powerful paradigm for scientific research." The Innovation 2, no. 4 (2021): 100179.
- Yeo, W. D., Kim, S., Lee, B., & Noh, K. R. (2020). Data-Driven Approach to Identify Research Topics for Science and Technology Diplomacy. The Journal of the Korea Contents Association, 20(11), 216-227. Habibi, S. A., & Salim, L. (2021). Static vs. dynamic methods of delivery for science communication: A critical analysis of user engagement with science on social media. PLoS One, 16(3), e0248507
|