- زنجیرابی فراهانی، رضا و عسگر، نسرین (1384) «انبارداری و ذخیرهسازی»، تهران، دانشگاه صنعتی امیرکبیر.
- علیمی، حسینعلی (1380), «مدیریت انبار و عملیات مرتبط با سیستمهای انبارداری»، تهران، سازمان مدیریت صنعتی.
- ALONSO-AYUSO, A., TIRADO, G. & UDÍAS, Á. (2013). On a selection and scheduling problem in automatic storage and retrieval warehouses. International Journal of Production Research, 51, 5337-5353 https://doi.org/10.1080/00207543.2013.813984
- International Conference on Industrial Engineering and Systems Management (IESM) (pp. 1-7). IEEE
- ARABANI, A. B. & FARAHANI, R. Z. (2012). Facility location dynamics: An overview of classifications and applications. Computers & Industrial Engineering, 62, 408-420.https://doi.org/10.1016/j.cie.2011.09.018
- BALLESTÍN, F., PÉREZ, Á. & QUINTANILLA, S. (2020). A multistage heuristic for storage and retrieval problems in a warehouse with random storage. International Transactions in Operational Research, 27, 1699-1728 // https://doi.org/10.1111/itor.12454
- BERMAN, B. (1996). Marketing channels, John Wiley & Sons In CORPORATION, T. C. 1999. Introduction to data mining and knowledge discovery, Two Crows
- BHARATI, M. & RAMAGERI, M. (2010). Data mining techniques and applications MUHAMEDYEV, R. 2015. Machine learning methods: An overview. Computer modelling & new technologies, 19, 14-29.
- ÇELIK, M., ARCHETTI, C. & SÜRAL, H. (2021). Inventory routing in a warehouse: The storage replenishment routing problem. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2021.11.056
- LI, L. & CHEN, Z. Hungarian-based Heuristics for Single-machine Flow-Rack AS/RS with Determined Storage and Retrieval Locations. Proceedings of the 3rd International Conference on Computer Science and Application Engineering, (2019). 1-7. https://doi.org/10.1145/3331453.3361669
- DUPONT, L. Warehouse location problem with concave costs: heuristics and exact method. The Proceedings of the Multiconference on" Computational Engineering in Systems Applications", (2006). IEEE, 1341-1346. https://doi.org10.1109/CESA.2006.4281845
- GASTWIRTH, J. L., GEL, Y. R. & MIAO, W. (2009). The impact of Levene’s test of equality of variances on statistical theory and practice. Statistical Science, 24, 343-360.
- GOETSCHALCKX, M. & RATLIFF, H. D. (1990). Shared storage policies based on the duration stay of unit loads. Management Science, 36, 1120-1132. https://doi.org/10.1287/mnsc.36.9.1120
- KALFAKAKOU, R., KATSAVOUNIS, S. & TSOUROS, K. (2003). Minimum number of warehouses for storing simultaneously compatible products. International Journal of Production Economics, 81, 559-564. https://doi.org/10.1016/S0925-5273(02)00368-7
- LI, L. & CHEN, Z. Hungarian-based Heuristics for Single-machine Flow-Rack AS/RS with Determined Storage and Retrieval Locations. Proceedings of the 3rd International Conference on Computer Science and Application Engineering, (2019). 1-7.https://doi.org/10.1109/ACCESS.2023.3246518
- LU, W., MCFARLANE, D., GIANNIKAS, V. & ZHANG, Q. (2016). An algorithm for dynamic order-picking in warehouse operations. European Journal of Operational Research, 248, 107-122. https://doi.org/10.1016/j.ejor.2015.06.074
- LU, Y., SUN, Y., XU, G. & LIU, G. A grid-based clustering algorithm for high-dimensional data streams. International Conference on Advanced Data Mining and Applications, (2005). Springer, 824-831. https://doi.org/10.1007/11527503_97
- HAN, J. & KAMBER, M. (2001). Data mining: concepts and techniques. 1st edn San Diego. CA: Academic Press.
- HAND, D. J., MANNILA, H. & SMYTH, P. (2001). Principles of data mining (adaptive computation and machine learning), MIT Press..
- MATZLIACH, B. & TZUR, M. (2000). Storage management of items in two levels of availability. European Journal of Operational Research, 121, 363-379. 10.1016/S0377-2217(99)00037-5
- MCKIGHT, P. E. & NAJAB, J. (2010). Kruskal‐wallis test. The corsini encyclopedia of psychology, 1-1. https://doi.org/10.1002/9780470479216.corpsy0491
- MEZGHANI, S. & FRIKHA, A. (2012). A heuristic approach to the warehouse management problem: a real case study. International Journal of Logistics Systems and Management, 13, 342-357. https://doi.org/10.1504/IJLSM.2012.049702.
- MITCHELL, T. M. (2006). The discipline of machine learning, Carnegie Mellon University, School of Computer Science, Machine Learning
- MIRZA, S., MITTAL, S. & ZAMAN, M. (2016). A review of data mining literature. International Journal of Computer Science and Information Security (IJCSIS), 14, 437-442.
- NISHI, T. & KONISHI, M. (2010). An optimisation model and its effective beam search heuristics for floor-storage warehousing systems. International Journal of Production Research, 48, 1947-1966. https://doi.org/10.1080/00207540802603767
- PALMER, A., JIMÉNEZ, R. & GERVILLA, E. (2011). Data mining: Machine learning and statistical techniques. Knowledge-Oriented Applications in Data Mining, Prof. Kimito Funatsu (Ed.), 373-396. https://doi.org/10.5772/13621
- QIU, R., SUN, Y. & SUN, M. (2022). A robust optimization approach for multi-product inventory management in a dual-channel warehouse under demand uncertainties. Omega, 102591. https://doi.org/10.1016/j.omega.2021.102591
- QUINTANILLA, S., PÉREZ, Á., BALLESTÍN, F. & LINO, P. (2015). Heuristic algorithms for a storage location assignment problem in a chaotic warehouse. Engineering Optimization, 47, 1405-1422. https://doi.org/10.1080/0305215X.2014.969727.
- REVILLOT-NARVÁEZ, D., PÉREZ-GALARCE, F. & ÁLVAREZ-MIRANDA, E. (2019). Optimising the storage assignment and order-picking for the compact drive-in storage system. International Journal of Production Research, 1-21http://doi.org/10.1080/00207543.2019.1687951
- ROTH, A. J. (1983). Robust trend tests derived and simulated: Analogs of the Welch and Brown-Forsythe tests. Journal of the American Statistical Association, 78, 972-980. http://doi.org /10.1080/01621459.1983.10477048
- SEYEDI, I., HAMEDI, M. & TAVAKKOLI-MOGHADDAM, R. (2019). Truck Schedulin Cross-Docking Terminal by Using Novel Robust Heuristics. International Journal of Engineering, 32, 296-305.http://doi.org/10.5829/ije.2019.32.02b.15.
- SHAKERI, M., LOW, M. Y. H., TURNER, S. J. & LEE, E. W. (2012). A robust two-phase heuristic algorithm for the truck scheduling problem in a resource-constrained crossdock. Computers & Operations Research, 39, 2564-2577. https://doi.org/10.1016/j.cor.2012.01.002.
- SHAPIRO, S. S. & WILK, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591-611. https://doi.org/10.2307/2333709
- Heuristic solutions for transshipment problems in a multiple door cross docking warehouse. Computers & Industrial Engineering, 61, 402-408. https://doi.org/10.(1016)/j.cie.2010.09.010
- SUKHOV, P., BATSYN, M. & TERENTEV, P. A Dynamic Programming Heuristic for Optimizing Slot Sizes in a Warehouse. ITQM, (2014). 773-777. https://doi.org/10.1016/j.procs.2014.05.327
- TOOTKALEH, S. R., GHOMI, S. F. & SAJADIEH, M. Tootkaleh, S. R., Ghomi, S. F., & Sajadieh, M. S. (2016). Cross dock scheduling with fixed outbound trucks departure times under substitution condition. Computers & industrial engineering, 92, 50-56. https://doi.org/10.1016/j.cie.2015.12.005
- TAN, P.-N., STEINBACH, M. & KUMAR, V. (2013). Data mining cluster analysis: basic concepts and algorithms. Introduction to data mining, 487, 533
- VAN DEN BERG, J. P. & GADEMANN, A. (2000). Simulation study of an automated storage/retrieval system. International Journal of Production Research, 38, 1339-1356. https://doi.org/10.1080/002075400188889
- VELICKOV, S. & SOLOMATINE, D. Predictive data mining: practical examples. 2nd Joint Workshop on Applied AI in Civil Engineering, (2000).
- WAUTERS, T., VILLA, F., CHRISTIAENS, J., ALVAREZ-VALDES, R. & BERGHE, G. V. 2016. A decomposition approach to dual shuttle automated storage and retrieval systems. Computers & Industrial Engineering, 101, 325-33. https://doi.org/10.1016/j.cie.2016.09.013
- WITT, A. & VOß, S. (2007). Simple heuristics for scheduling with limited intermediate storage. Computers & Operations Research, 34, 2293-2309. https://doi.org/10.1016/j.cor.2005.09.004
- XIAO, J. & ZHENG, L. (2010). A correlated storage location assignment problem in a single-block-multi-aisles warehouse considering BOM information. International Journal of Production Research, 48, 1321-1338. https://doi.org/10.1080/00207540802555736
- YANG, D., WU, Y. & MA, W. (2021). Optimization of storage location assignment in automated warehouse. Microprocessors and Microsystems, 80, 103356. https://doi.org/10.1016/j.micpro.2020.103356
- ZAERPOUR, N., YU, Y. & DE KOSTER, R. B. 2015. Storing fresh produce for fast retrieval in an automated compact cross‐dock system. Production and Operations Management, 24, 1266-1284. https://doi.org/10.1111/poms.1232
- ZHANG, G., SHANG, X., ALAWNEH, F., YANG, Y. & NISHI, T. (2021). Integrated production planning and warehouse storage assignment problem: An IoT assisted case. International Journal of Production Economics, 234, 108058. https://doi.org/10.1016/j.ijpe.2021.108058
- Faveto, A., Traini, E., Bruno, G., & Chiabert, P. (2024). based method for evaluating key performance indicators: an application on warehouse system. The International Journal of Advanced Manufacturing Technology, 130(1), 297-310.http://doi.org/ 10.1007/s00170-023-12684-4
- Do, E., Kim, M., Ko, D. Y., Lee, M., Lee, C., & Ku, K. M. (2024). Machine learning for storage duration based on volatile organic compounds emitted from'Jukhyang'and'Merry Queen'strawberries during post-harvest storage. Postharvest Biology and Technology, 211, 112808. https://doi.org/10.1016/j.postharvbio.2024.112808
- Kaynov, I. (2021). Deep Reinforcement Learning for Asymmetric One-Warehouse Multi-Retailer Inventory Management. https://doi.org/10.1016/j.ijpe.2023.109088
- Tokat, S., Karagul, K., Sahin, Y., & Aydemir, E. (2022). Fuzzy c-means clustering-based key performance indicator design for warehouse loading operations. Journal of King Saud University-Computer and Information Sciences, 34(8), 6377-6384. https://doi.org/10.1016/j.jksuci.2021.08.003
- Li, Y., Wang, H., Bai, K., & Chen, S. (2021). Dynamic intelligent risk assessment of hazardous chemical warehouse fire based on electrostatic discharge method and improved support vector machine. Process Safety and Environmental Protection, 145, 425-434.http://doi.org/ 10.1016/j.psep.2020.11.012
- Karder, J., Beham, A., Werth, B., Wagner, S., & Affenzeller, M. (2022). Integrated Machine Learning in Open-Ended Crane Scheduling: Learning Movement Speeds and Service Times. Procedia Computer Science, 200, 1031-1040. https://doi.org/10.1016/j.procs.2022.01.302
- Giner, J., Katic, D., Kovacs, K., Glawar, R., & Sihn, W. (2023). A computer vision based approach to reduce system downtimes in an automated high-rack logistics warehouse. Procedia CIRP, 118, 1078-1083. https://doi.org/10.1016/j.procir.2023.06.185
- Voća, N., Pezo, L., Jukić, Ž., Lončar, B., Šuput, D., & Krička, T. (2022). Estimationof the storage properties of rapeseeds using an artificial neural network. Industrial Crops and Products, 187, 115358. https://doi.org/10.1016/j.indcrop.2022.115358
- adier, A. L., & Alpan, G. (2013, October). Scheduling truck arrivals and departures in a crossdock: Earliness, tardiness and storage policies. In Proceedings of 2013
|