[1] An, H., Huang, F., The geometrical ergodicity of nonlinear autoregressive models, Statistica
Sinica, (1996), 943-956.
[2] Barndorff-Nielsen, O., Shephard, N., Financial volatility, L´evy processes and power
variation, (2000).
[3] Bollerslev, T., Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31 (1986), 307-327.
[4] Box, G. E., Jenkins, G. M., Reinsel, G. C. and Ljung, G. M.,, Time series analysis:
forecasting and control, John Wiley & Sons (2015).
[5] Chan, K. S., Tong, H., On the use of the deterministic Lyapunov function for the ergodicity
of stochastic difference equations, Advances in applied probability, 17 (3) (1985), 666-678.
[6] Chatfield, C., The analysis of time series: an introduction, Chapman and Hall/CRC
(2003).
[7] Chen, G. Y., Gan, M., Chen, G. L., Generalized exponential autoregressive models for nonlinear time series: Stationarity, estimation and applications, Information sciences, Elsevier,
438 (2018), 46-57.
[8] Cuthbertson, K., Nitzsche, D., Quantitative financial economics: stocks, bonds and foreign exchange, John Wiley & Sons, (2005).
[9] Farnoosh, R., Nabati, P., Azizi, M., Simulating and forecasting OPEC oil price using
stochastic differential equations, Journal of new researches in mathematics, 2 (7) (2016),
21-30.
[10] Haggan, V., Ozaki, T., Modelling nonlinear random vibrations using an amplitudedependent autoregressive time series model, Biometrika, 68 (1) (1981), 189-196.
[11] Hjorth, J. U., Computer intensive statistical methods: Validation, model selection, and
bootstrap, (2017).
[12] Jenabi, O., Dahmarde Ghaleno, N., Subordinate Shares Pricing under Fractional-Jump
Heston Model, Financial Research Journal, 21 (3) (2019), 392- 416.
[13] Lamarche, C., Robust penalized quantile regression estimation for panel data, Journal of
Econometrics, 157 (2) (2010), 396-408.
[14] Merzougui, M., Dridi, H., Chadli, A., Test for periodicity in restrictive EXPAR models,
Communications in Statistics-Theory and Methods, 45 (9) (2016), 27702783.
[15] Mills, T. C., Time series techniques for economists, Cambridge University Press, (2003).
[16] Mohammadi, M., Nabati, P., Modeling Financial Markets Using Combined Ornsteinuhlenbeck Process with Levy Noise, Financial Research Journal, 23 (3) (2021), 404-418.
[17] Nabati, P., Hajrajabi, A., , Three-Factor Mean Reverting Ornstein-Uhlenbeck Process
with Stochastic Drift Term Innovations: Nonlinear Autoregressive Approach with Dependent
Error, Filomat, 36 (7) (2022), 2345-2355.
[18] Ozaki, T. and Oda, H., Non-linear time series model identification by Akaike’s information
criterion, IFAC Proceedings Volumes, 10 (12) (1977), 83-91.
[19] Ozaki, T., Non-linear time series models for non-linear random vibrations, Journal of Applied Probability, 17 (1) (1980), 84-93.
[20] Ozaki, T., Non-linear threshold autoregressive models for non-linear random vibrations,
Journal of Applied Probability, 18 (2) (1981), 443-451.
[21] Pan, J., Liu, Y., Shu, J., Gradient-based Parameter Estimation for a Nonlinear Exponential
Autoregressive Time-series Model by Using the Multi-innovation, International Journal of
Control, Automation and Systems, 21 (2023), 140-150.
[22] Raei, R., Bajalan, S., Ajam, A., Investigating the Efficiency of the 1/N Model in Portfolio
Selection, Financial Research Journal, 23 (1) (2021), 1-16.
[23] Raei, R., Basakha, H., Mahdikhah, H., Equity Portfolio Optimization Using Mean-CVaR
Method Considering Symmetric and Asymmetric Autoregressive Conditional Heteroscedasticity, Financial Research Journal, 22 (2) (2020), 149-159.
[24] Ramsay, J. O., Functional data analysis, Encyclopedia of Statistical Sciences, 4 (2004).
[25] Stock, J. H., Watson, M. W., A comparison of linear and nonlinear univariate models for
forecasting macroeconomic time series, National Bureau of Economic Research (1998).
[26] Tabatabaei, S. J., Pakgohar, A, Time Series Modeling of Extreme Losses Values Based
on a Spectral Analysis Approach, Financial Research Journal, 22 (4) (2020), 594-611.
[27] Taylor, S. J., Asset price dynamics, volatility, and prediction, Princeton university press
(2011).
[28] Terasvirta, T. ¨ , Specification, estimation, and evaluation of smooth transition autoregressive models, Journal of the american statistical association, 89 (425) (1994), 208-218.
[29] Tjøstheim, D., Non-linear time series and Markov chains, Advances in Applied Probability,
22 (3) (1990), 587-611.
[30] Tong, H., Non-linear time series: a dynamical system approach, Oxford University Press,
(1990).
[31] Tweedie H., Criteria for classifying general Markov chains, Advances in Applied Probability,
8 (4) (1976), 737-771.
[32] Xu, H., Ding, F., Yang, E., Modeling a nonlinear process using the exponential autoregressive time series model, Nonlinear Dynamics, Springer link,95 (2019), 2079-2092.
[33] Yazdani, F., Khashei, M., Hejazi, S. R., Using a Graph-based Method for Detecting the
Optimal Turning Points of Financial Time Series, Financial Research Journal, 24 (1) (2022),
18-36.