Jackson, L. M. (2019). The psychology of prejudice: From attitudes to social action (2nd ed.). American Psychological Association
Asparouhov, T., & Muthén, B. (2012). General random effect latent variable modeling: Random subjects, items, contexts, and parameters. In annual meeting of the National Council on Measurement in Education, Vancouver, British Columbia.
Akbaş, U. (2017). Examination of the Effects of Different Missing Data Techniques on Item Parameters Obtained by CTT and IRT. International Online Journal of Educational Sciences, 9(3).
Bartolucci, F., Bacci, S., & Gnaldi, M. (2015). Statistical analysis of questionnaires: A unified approach based on R and Stata (Vol. 34). CRC Press.
Bashkov, B. M., & DeMars, C. E. (2017). Examining the performance of the Metropolis–Hastings Robbins–Monro algorithm in the estimation of multilevel multidimensional IRT models. Applied psychological measurement, 41(5), 323-337.
Bulut, O., & SÜNBÜL, Ö. (2017). Monte Carlo Simulation Studies in Item Response Theory with the R Programming Language R Programlama Dili ile Madde Tepki Kuramında Monte Carlo Simülasyon Çalışmaları. Journal of Measurement and Evaluation in Education and Psychology, 8(3), 266-287.
Cai, L. (2010). High-dimensional exploratory item factor analysis by a Metropolis–Hastings Robbins–Monro algorithm. Psychometrika, 75(1), 33-57.
Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahway.
Dong, Y., & Peng, C. Y. J. (2013). Principled missing data methods for researchers. SpringerPlus, 2(1), 1-17.
Enders, C. K. (2010). Applied missing data analysis. Guilford Press.
Embretson, S. E., & Reise, S. P. (2013). Item response theory. Psychology Press.
Finch, H. (2008). Estimation of item response theory parameters in the presence of missing data. Journal of Educational Measurement, 45(3), 225-245.
Finch, W. H. (2010). Imputation methods for missing categorical questionnaire data: A comparison of approaches. Journal of Data Science, 8(3), 361-378.
Gibbons, R. D., Weiss, D. J., Frank, E., & Kupfer, D. (2016). Computerized adaptive diagnosis and testing of mental health disorders. Annual Review of Clinical Psychology, 12, 83-104.
Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1985). Principles and applications of item response theory.
Han, K. T., & Hambleton, R. K. (2014). User's Manual for WinGen 3: Windows Software that Generates IRT Model Parameters and Item Responses (Center for Educational Assessment Report No. 642). Amherst, MA: University of Massachusetts.
Liu, Q., & Pierce, D. A. (1994). A note on Gauss—Hermite quadrature. Biometrika, 81(3), 624-629.
Kuo, F. Y., & Sloan, I. H. (2005). Lifting the curse of dimensionality. Notices of the AMS, 52(11), 1320-1328.
Kuo, T. C., & Sheng, Y. (2016). A comparison of estimation methods for a multi-unidimensional graded response IRT model. Frontiers in psychology, 7, 880, 1-29.
Lesaffre, E., & Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random effects model: an example. Journal of the Royal Statistical Society: Series C (Applied Statistics), 50(3), 325-335.
Linden, W. J. & van der, & Hambleton, RK (1997). Handbook of modern item response theory, 9-39.
Naylor, J. C., & Smith, A. F. (1982). Applications of a method for the efficient computation of posterior distributions. Journal of the Royal Statistical Society: Series C (Applied Statistics), 31(3), 214-225.
Patz, R. J., & Junker, B. W. (1999). Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses. Journal of educational and behavioral statistics, 24(4), 342-366.
Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics, 400-407.
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592.
Schouten, R. M., Lugtig, P., & Vink, G. (2018). Generating missing values for simulation purposes: a multivariate amputation procedure. Journal of Statistical Computation and Simulation, 88(15), 2909-2930.
Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of statistical software, 45, 1-67.
Yang, J. S., & Cai, L. (2014). Estimation of contextual effects through nonlinear multilevel latent variable modeling with a Metropolis–Hastings Robbins–Monro algorithm. Journal of Educational and Behavioral Statistics, 39(6), 550-582.