[1] S. Ahmed, M. M. Alshater, A. El Ammari, H. Hammami, Artificial intelligence and
machine learning in finance: A bibliometric review, Research in International Business and
Finance, 61 (2022), 101646. https://doi.org/10.1016/j.ribaf.2022.101646
[2] E. Abounori, R. Tehrani, M. Shamani, Performance of risk-based portfolios under different conditions in the stock market (Evidence from the Iranian stock market), Financial
Economics, 45(12) (2018), 51-71. [In Persian]
[3] D. Bailey, M. Lopez de Prado ´ , An open-source implementation of the critical-line algorithm for portfolio optimization, Algorithms, 6(1) (2013), 169-196. https://doi.org/10.
3390/a6010169
[4] F. Black, R. Litterman, Asset allocation combining investor views with market equilibrium,
Journal of Fixed Income, 1(2) (1991), 7-18. https://doi.org/10.3905/jfi.1991.408013
[5] N. Bnouachir, A. Mkhadri, Efficient cluster-based portfolio optimization, Communications
in Statistics-Simulation and Computation, 50(11) (2021), 3241-3255. https://doi.org/10.
1080/03610918.2019.1621341
[6] Y. Choueifaty, Y. Coignard, Toward maximum diversification, The Journal of Portfolio
Management, 35(1) (2008), 40-51. https://doi.org/10.3905/jpm.2008.35.1.40
[7] Y. Choueifaty, T. Froidure, J. Reynier, Properties of the most diversified portfolio, Journal of Investment Strategies, 2(2) (2013), 49-70. https://doi.org/10.21314/jois.2013.033
[8] V. Ciciretti, A. Bucci, Building optimal regime-switching portfolios, The North American
Journal of Economics and Finance, 64 (2023), 101837. https://doi.org/10.1016/j.najef.
2022.101837
[9] R. Clarke, H. De Silva, S. Thorley, Portfolio constraints and the fundamental law of active management, Financial Analysts Journal, 58 (2002), 48-66. https://doi.org/10.2469/
faj.v58.n5.2468
[10] V. De Miguel, L. Garlappi, R. Uppal, Optimal versus na¨ıve diversification: How inefficient is the 1/N portfolio strategy?, Review of Financial Studies, 22(5) (2009), 1915-1953.
https://doi.org/10.1093/rfs/hhm075
[11] M. Lopez de Prado, A robust estimator of the efficient frontier, Available at SSRN, (2016).
http://dx.doi.org/10.2139/ssrn.3469961
[12] M. M. De Prado, Advances in financial machine learning, John Wiley & Sons, 2018.
[13] M. M. De Prado, Machine learning for asset managers, Cambridge University Press, 2020.
[14] A. Dogan, D. Birant, K-centroid link: a novel hierarchical clustering linkage method, Applied Intelligence, (2022), 1-24. https://doi.org/10.1007/s10489-021-02624-8
[15] F. Fabozzi, P. Kolm, D. Pachamanova, S. Focardi, Robust portfolio optimization and
management, Wiley Finance, First Edition, (2007).
[16] J. Guerard, Handbook of portfolio construction, Springer, First Edition, 2010.
[17] O. Ledoit, M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, 88(2) (2003), 365-411. https://doi.org/10.1016/
s0047-259x%2803%2900096-4
[18] S. Maillard, T. Roncalli, J. Te¨ıletche, The properties of equally weighted risk contribution portfolios, The Journal of Portfolio Management, 36(4) (2010), 60-70. https:
//doi.org/10.3905/jpm.2010.36.4.060
[19] H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91.
[20] R. Michaud, Efficient asset allocation: a practical guide to stock portfolio optimization and
asset allocation, MA: Harvard Business School Press, (1998).
[21] S. M. Mirlouhi, N. Mohammadi Toodeshki, Optimal portfolio construction in Tehran
Stock Exchange using hierarchical and divisive clustering methods, Investment Knowledge,
9(34) (2020), 333-354. [In Persian]
[22] M. Momeni, A. Fa’al Qayoumi, Statistical analysis using SPSS, Author, Fifth Edition, 2022.
[In Persian]
[23] H. Nikumaram, F. Rahnamay Roodposhti, M. Zanjirdar, The explanation of risk and expected rate of return by using Conditional Downside Capital Assets Pricing Model, Financial
Knowledge of Securities Analysis, 3(1) (2008), 55-77. [In Persian]
[24] M. Nourahmadi, H. Sadeghi, The Application of the Main Components in Investment
Basket Management: A Case Study of Fifty Stock Exchange Companies, Budget and Finance Strategic Research, 3(1) (2022), 71-95. [In Persian] https://dor.isc.ac/dor/20.1001.
1.27171809.1401.3.1.3.6
[25] M. Nourahamadi, H. Sadeghi, A Machine Learning-Based Hierarchical Risk Parity Approach: A Case Study of Portfolio Consisting of Stocks of the Top 30 Companies on the
Tehran Stock Exchange, Financial Research Journal, 24(2) (2022), 236-256. [In Persian]
https://doi.org/10.22059/frj.2021.319092.1007146
[26] M. Nourahmadi, H. Sadeqi, Portfolio Diversification Based on Clustering Analysis, Iranian
Journal of Accounting, Auditing and Finance, 7(3) (2023), 1-16. https://doi.org/10.22067/
ijaaf.2023.43078.1092
[27] A. Y. Poletaev, E. M. Spiridonova, Hierarchical clustering as a dimension reduction
technique in the Markowitz portfolio optimization problem, Automatic Control and Computer
Sciences, 55(7) (2021), 809-815. https://doi.org/10.3103/s0146411621070270
[28] E. Y. Qian, F. Ying, J. Higgison, A dynamic decision model for portfolio investment
and assets management, Journal of Zhejiang University-SCIENCE A, 6 (2005), 163-171.
https://doi.org/10.1631/jzus.2005.as0163
[29] B. Rodr´ıguez-Camejo, Random matrix theory and nested clustered optimization on highdimensional portfolios, International Journal of Modern Physics C (IJMPC), 35(08) (2024),
1-19. https://doi.org/10.1142/S0129183124500980
[30] M. Soltani-Nejad, M. Davallou, Portfolio Optimization with Clustering Methods, Journal
of Asset Management and Financing, 4(4) (2016), 1-16. https://doi.org/10.22108/amf.
2016.21104
[31] D. Sjostrand, N. Behnejad, M. Richter ¨ , Exploration of hierarchical clustering in longonly risk-based portfolio optimization, PhD thesis, CBS, Copenhagen, 2020.
[32] H. O. Zapata, S. Mukhopadhyay, A bibliometric analysis of machine learning econometrics
in asset pricing, Journal of Risk and Financial Management, 15(11) (2022), 535. https:
//doi.org/10.3390/jrfm15110535