- Alenezi, A., Moses, S.A. and Trafalis, T.B. (2008), "Real-time prediction of order flowtimes using support vector regression", Computers & Operations Research, Vol. 35 No. 11, pp. 3489–3503, https://doi.org/10.1016/j.cor.2007.01.026
- Alnahhal, M., Ahrens, D. and Salah, B. (2021), "Dynamic Lead-Time Forecasting Using Machine Learning in a Make-to-Order Supply Chain", Applied Sciences, Vol. 11 No. 21, https://doi.org/10.3390/app112110105
- Alsadi, J., Antony, J., Mezher, T., Jayaraman, R. and Maalouf, M. (2022), "Lean and Industry 4.0: A Bibliometric Analysis, Opportunities for Future Research Directions", Quality Management Journal, Taylor and Francis Ltd., https://doi.org/10.1080/10686967.2022.2144785
- Baryannis, G., Dani, S. and Antoniou, G. (2019), "Predicting supply chain risks using machine learning: The trade-off between performance and interpretability", Future Generation Computer Systems, Vol. 101, pp. 993–1004, https://doi.org/10.1016/j.future.2019.07.059
- Bassiouni, M.M., Chakrabortty, R.K., Sallam, K.M. and Hussain, O.K. (2024), "Deep learning approaches to identify order status in a complex supply chain", Expert Systems with Applications, Vol. 250, p. 123947 https://doi.org/10.1016/j.eswa.2024.123947
- Brintrup, A., Pak, J., Ratiney, D., Pearce, T., Wichmann, P., Woodall, P. and McFarlane, D. (2020), "Supply chain data analytics for predicting supplier disruptions: a case study in complex asset manufacturing", International Journal of Production Research, Taylor & Francis, Vol. 58 No. 11, pp. 3330–3341, https://doi.org/10.1080/00207543.2019.1685705
- Burggräf, P., Wagner, J., Heinbach, B. and Steinberg, F. (2021), "Machine Learning-Based Prediction of Missing Components for Assembly – a Case Study at an Engineer-to-Order Manufacturer", IEEE Access, Vol. 9, pp. 105926–105938, DOI:10.1109/ACCESS.2021.3075620
- Dillinger, F., Bergermeier, J. and Reinhart, G. (2022), "Implications of Lean 4.0 Methods on Relevant Target Dimensions: Time, Cost, Quality, Employee Involvement, and Flexibility", Procedia CIRP, Vol. 107, Elsevier B.V., pp. 202–208, https://doi.org/10.1016/j.procir.2022.04.034
- Elafri, N., Tappert, J., Rose, B. and Yassine, M. (2022), "Lean 4.0: Synergies between Lean Management tools and Industry 4.0 technologies", IFAC-PapersOnLine, Vol. 55, Elsevier B.V., pp. 2060–2066, https://doi.org/10.1016/j.ifacol.2022.10.011
- ER, C.H. and MOSAWI, T. Al. (2022), "Effects of Big Data Analytics on Sustainable Manufacturing: A Comparative Study Analysis", Chinese Journal of Urban and Environmental Studies, World Scientific Publishing Co., Vol. 10 No. 04, p. 2250022, https://doi.org/10.1142/S2345748122500221
- Gabellini, M., Civolani, L., Calabrese, F. and Bortolini, M. (2024), "A Deep Learning Approach to Predict Supply Chain Delivery Delay Risk Based on Macroeconomic Indicators: A Case Study in the Automotive Sector", Applied Sciences (Switzerland), Multidisciplinary Digital Publishing Institute (MDPI), Vol. 14 No. 11, https://doi.org/10.3390/app14114688
- Garcia-Buendia, N., Moyano-Fuentes, J., Maqueira-Marín, J.M. and Cobo, M.J. (2021), "22 Years of Lean Supply Chain Management: a science mapping-based bibliometric analysis", International Journal of Production Research, Taylor and Francis Ltd., https://doi.org/10.1080/00207543.2020.1794076
- Gong, Y., Liu, G., Xue, Y., Li, R. and Meng, L. (2023), "A survey on dataset quality in machine learning", Information and Software Technology, Vol. 162, p. 107268, doi: https://doi.org/10.1016/j.infsof.2023.107268
- Gyulai, D., Pfeiffer, A., Nick, G., Gallina, V., Sihn, W. and Monostori, L. (2018), "Lead time prediction in a flow-shop environment with analytical and machine learning approaches", IFAC-PapersOnLine, Vol. 51 No. 11, pp. 1029–1034, doi: https://doi.org/10.1016/j.ifacol.2018.08.472
- İfraz, M., Aktepe, A., Ersöz, S. and Çetinyokuş, T. (2023), "Demand forecasting of spare parts with regression and machine learning methods: Application in a bus fleet", Journal of Engineering Research, Vol. 11 No. 2, p. 100057, doi: https://doi.org/10.1016/j.jer.2023.100057
- Ivanov, A. and Jaff, T. (2017), "Manufacturing Lead Time Reduction and Its Effect on Internal Supply Chain", in Campana, G., Howlett, R.J., Setchi, R. and Cimatti, B. (Eds.), Sustainable Design and Manufacturing 2017, Springer International Publishing, Cham, pp. 398–407, DOI:10.1007/978-3-319-57078-5_38
- Jayanti, L.P.S.D. and Wasesa, M. (2022), “Application of Predictive Analytics To Improve The Hiring Process In A Telecommunications Company”, Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, Universitas Islam Negeri Sultan Syarif Kasim Riau, Vol. 8 No. 1, DOI: http://dx.doi.org/10.24014/coreit.v8i1.16915
- Kumar, C. and Singh, B. (2022), "A Comparative Study of Machine Learning Regression Approach on Dental Caries Detection", Procedia Computer Science, Vol. 215, pp. 519–528, https://doi.org/10.1016/j.procs.2022.12.054
- Lingitz, L., Gallina, V., Ansari, F., Gyulai, D., Pfeiffer, A., Sihn, W. and Monostori, L. (2018), "Lead time prediction using machine learning algorithms: A case study by a semiconductor manufacturer", Procedia CIRP, Vol. 72, pp. 1051–1056, https://doi.org/10.1016/j.procir.2018.03.148
- Maware, C. and Parsley, D.M. (2023), "Can Industry 4.0 Assist Lean Manufacturing in Attaining Sustainability over Time? Evidence from the US Organizations", Sustainability (Switzerland), MDPI, Vol. 15 No. 3, https://doi.org/10.3390/su15031962
- Mohamed-Iliasse, M., Loubna, B. and Abdelaziz, B. (2022), "Machine Learning in Supply Chain Management: A Systematic Literature Review", International Journal of Supply and Operations Management, Kharazmi University, Vol. 9 No. 4, pp. 398–416, DOI:10.22034/ijsom.2021.109189.2279
- de Oliveira, M.B., Zucchi, G., Lippi, M., Cordeiro, D.F., da Silva, N.R. and Iori, M. (2021), "Lead Time Forecasting with Machine Learning Techniques for a Pharmaceutical Supply Chain", International Conference on Enterprise Information Systems, ICEIS - Proceedings, Vol. 1, Science and Technology Publications, Lda, pp. 634–641, DOI:10.5220/0010434406340641
- Öztürk, A., Kayalıgil, S. and Özdemirel, N.E. (2006), “Manufacturing lead time estimation using data mining”, European Journal of Operational Research, Vol. 173 No. 2, pp. 683–700, https://doi.org/10.1016/j.ejor.2005.03.015
- Pfeiffer, A., Gyulai, D., Kádár, B. and Monostori, L. (2016), “Manufacturing Lead Time Estimation with the Combination of Simulation and Statistical Learning Methods”, Procedia CIRP, Vol. 41, pp. 75–80, doi: https://doi.org/10.1016/j.procir.2015.12.018
- Pozzi, R., Cannas, V.G. and Ciano, M.P. (2022), "Linking data science to lean production: a model to support lean practices", International Journal of Production Research, Taylor and Francis Ltd., Vol. 60 No. 22, pp. 6866–6887, https://doi.org/10.1080/00207543.2021.1946192
- Qureshi, K.M., Mewada, B.G., Kaur, S. and Qureshi, M.R.N.M. (2023), "Assessing Lean 4.0 for Industry 4.0 Readiness Using PLS-SEM towards Sustainable Manufacturing Supply Chain", Sustainability (Switzerland), MDPI, Vol. 15 No. 5, https://doi.org/10.3390/su15053950
- Rahman, Md.S., Ghosh, T., Aurna, N.F., Kaiser, M.S., Anannya, M. and Hosen, A.S.M.S. (2023), "Machine learning and internet of things in industry 4.0: A review", Measurement: Sensors, Vol. 28, p. 100822, doi: https://doi.org/10.1016/j.measen.2023.100822
- Rokoss, A., Syberg, M., Tomidei, L., Hülsing, C., Deuse, J. and Schmidt, M. (2024), "Case study on delivery time determination using a machine learning approach in small batch production companies", Journal of Intelligent Manufacturing, https://doi.org/10.1007/s10845-023-02290-2
- Schneckenreither, M., Haeussler, S. and Gerhold, C. (2021), "Order release planning with predictive lead times: a machine learning approach", International Journal of Production Research, Taylor & Francis, Vol. 59 No. 11, pp. 3285–3303, https://doi.org/10.1080/00207543.2020.1859634
- Shapi, M.K.M., Ramli, N.A. and Awalin, L.J. (2021), "Energy consumption prediction by using machine learning for smart building: Case study in Malaysia", Developments in the Built Environment, Vol. 5, p. 100037, https://doi.org/10.1016/j.dibe.2020.100037
- Singh, S. and Soni, U. (2019), "Predicting Order Lead Time for Just in Time production system using various Machine Learning Algorithms: A Case Study", 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 422–425, DOI: 10.1109/CONFLUENCE.2019.8776892
- Steinberg, F., Burggräf, P., Wagner, J., Heinbach, B., Saßmannshausen, T. and Brintrup, A. (2023), "A novel machine learning model for predicting late supplier deliveries of low-volume-high-variety products with application in a German machinery industry", Supply Chain Analytics, Vol. 1, p. 100003, https://doi.org/10.1016/j.sca.2023.100003
- Tao, S. (2023), Predicting BMW Stock Price Based on Linear Regression, LSTM, and Random Forest Regression, BCP Business & Management EMFRM, Vol. 2022, DOI: https://doi.org/10.54691/bcpbm.v38i.3712
- Welsing, M., Maetschke, J., Thomas, K., Gützlaff, A., Schuh, G. and Meusert, S. (2021), "Combining Process Mining and Machine Learning for Lead Time Prediction in High Variance Processes", in Behrens, B.-A., Brosius, A., Hintze, W., Ihlenfeldt, S. and Wulfsberg, J.P. (Eds.), Production at the Leading Edge of Technology, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 528–537
- Yang, M., Lim, M.K., Qu, Y., Ni, D. and Xiao, Z. (2023), "Supply chain risk management with machine learning technology: A literature review and future research directions", Computers & Industrial Engineering, Vol. 175, p. 108859, https://doi.org/10.1016/j.cie.2022.108859
|