| تعداد نشریات | 61 |
| تعداد شمارهها | 2,224 |
| تعداد مقالات | 18,166 |
| تعداد مشاهده مقاله | 55,941,716 |
| تعداد دریافت فایل اصل مقاله | 29,012,453 |
حل مسأله ی برش دوبعدی غیرگیوتینی با تقاضا با استفاده از الگوریتم بهینه سازی ازدحام ذرات | ||
| مطالعات مدیریت صنعتی | ||
| مقاله 4، دوره 10، شماره 26، مهر 1391، صفحه 75-94 اصل مقاله (3.61 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| نویسندگان | ||
| فائزه اسدیان اردکانی1؛ علی مروتی شریف آبادی2 | ||
| 1کارشناسی ارشد مدیریت صنعتی دانشگاه یزد | ||
| 2عضو هیات علمی گروه مدیریت صنعتی دانشکده اقتصاد دانشگاه یزد | ||
| چکیده | ||
| بهینهسازی چیدمان قطعات کاربردهای فراوانی در صنایع برش ورق فلزی، برش الوار، تولید شیشه، کاغذ و پوشاک دارد و به دلیل اهمیت کاهش ضایعات، روش های زیادی برای حل این مسأله ارائه شده است. یکی از بهترین روشها استفاده از الگوریتم بهینهسازی ازدحام ذرات میباشد. در این پژوهش، مسألهی برش دوبعدی با تقاضا مورد بررسی قرار میگیرد. در این مسأله باید با برش ورق های مستطیل شکل بزرگ، مستطیلهای کوچکتر مورد نیاز به نحوی تولید شوند که ضمن تأمین تقاضای آنها، ضایعات یا تعداد ورقهای مصرفی حداقل شود. در این مقاله جهت حل این مسأله از الگوریتم بهینهسازی ازدحام ذرات استفاده شده است. به منظور بهبود کارایی این الگوریتم و بهکار گرفته شد. جهت حل CUL جلوگیری از همپوشانی در مسأله ی برش، الگوریتم ابتکاری مسألهی فوق، نرم افزاری تهیه شد. این نرم افزار به دو حالت عمل میکند. در حالت اول با در نظرگرفتن طول و عرض صفحه ی اصلی، اندازه قطعات و تعداد مورد تقاضا، الگوی بهینهی برش را ارائه میدهد. در حالت دوم، امکان دادن عرضهای متفاوت به نرم افزار وجود دارد. در این حالت، نرمافزار پس از ارائهی عرض بهینه، الگوی بهینه ی برش و طول بهینهی صفحهی اصلی را نیز برای کاربر مشخص میکند. | ||
| کلیدواژهها | ||
| بهینهسازی؛ الگوریتمهای فراابتکاری؛ الگوریتم بهینهسازی ازدحام ذرات گسسته؛ مسألهی برش دوبعدی؛ CUL الگوریتم | ||
| مراجع | ||
|
1. مصلحی ٬ قاسم. رضایی ٬ علیرضا. ) 1383 (، "ارائه الگوریتمی برای مسئله برش دوبعدی با . تقاضا". استقلا ، ل سال ٬23 شماره 2 2. Dyckhoff, H. )1990(. A typology of cutting and packing problems. European Journal of Operational Research., 44, pp. 145–159. 3. Chambers, M.L.; Dyson, R.G. (1976). The cutting stock problem in the flat glass industry. Operations Research Quarterly., Vol 27, Nr. 4, pp. 949 -957. 4. Coffman, E.G.; Garey, M.R.; Johnson, D.S.; Tarjan, R.E. (1980). Performance Bounds for Level-Oriented Two-Dimensional Packing Algorithms. SIAM Journal on Computing., 9, 4, pp. 808-826. 5. Coffman, E.G.; Shor, P.W. (1990). Average-Case Analysis of Cutting and Packing in Two Dimensions. European Journal of Operational Research., 44, 2, pp. 134-145. 6. Paul, R.J. (1979). A production scheduling problem in the glass container industry. Operations Research., Vol 27, Nr. 2, pp. 290- 302. 7. Van-dat, C.; Hifi,mhand, and Le cun , bertrand, . (1997). Constrained two dimensional cutting stock problems , a best first branch and bound algorithm. laborattoire PR&SM-CNRS URA 1525, University of Versailles, paris. 8. Whitlock, C.; Christofides, N. )1977(. an Algorithm for Two- Dimensional Cutting Problems. Operations Research., Vol. 25, Nr. 1, January-February, pp. 30- 44. 9. Gass, S. (1985). Linear Programming, Methods and Applications. McGraw-Hill 10. Gradišar, M.; Jesenko, J.; Resinovič, G. (1997). Optimization of roll cutting in clothing industry. Computer & Operations Research., 24, pp. 945-953. 11. Gradišar, M.; Resinovič, G.; Jesenko, J.; Kljajić, M. (1999). A sequential heuristic procedure for one-dimensional cutting. European Journal of Operational Research., 114, pp. 557-568. 12. Kopač, J. (2002). Cutting forces and Their Influence on the Economics of Machining. Strojniški vestnik - Journal of Mechanical Engineering., 48 3, pp. 121-132. 13. Vasko, F.; Newhart, D.; Stott, K. (1999). A hierarchical approach for one-dimensional cutting stock problems in the steel industry that maximizes yield and minimizes overgrading. European Journal of Operational Research., 114, pp. 72-82. 14. Westerlund, T.; Harjunkoski, I.; Isaksson, J. (1998). Solving a Production Optimization Problem in a Paper-Converting Mill with MILP. Computers & Chemical Engineering., 22, pp. 563-570. 15. Nazemi, J.(2005). Kiln Planning a Cutting Stock Approach, Social Research Research Network. 16. Kantorovich, L.V. )1939(. Mathematical methods of organizing and planning production. Mgmt. Sci.,Vol. , pp.363-422. حل مسأله ی برش دوبعدی غیرگیوتینی با... 67 17. Gilmore, P.C.; Gomory, R.E. (1961). A Linear Programming Approach to the Cutting-Stock Problem. Operations Research., Vol. 9, pp. 849-859. 18. Gilmore, P.C.; Gomory, R.E. (1965). Multi-stage cutting stock problems of two and more dimensions. Operations Research., 13, pp. 94–120. 19. Farley, A.A. (1988). Mathematical programming models for cutting stock problems in the clothing industry. Journal of the Operational Research Society., 39, pp. 41–53. 20. Farley, A.A. (1990). A note on bounding a class of linear programming problems, including cutting stock problems. Operations Research., 38, pp. 922–923. 21. Beasley, J.E. )1985(. Algorithms for Unconstraind Two-Dimensional Guillotine Cutting. Operation’s Research Society.,Vol.36, No.4, PP.297-306. 22. Hifi, M.; Ouafi, R. )1977(. Best-first search And Dynamic Programming Methods for Cutting Problems: The cases of One or More Stock Plates. Computers ind.Eng., Vol.32, No.1, PP.187-205,. 23. Agrawal, P.K. (1993). Minimizing trim loss in cutting rectangular blanks of a single size from a rectangular sheet using orthogonal guillotine cuts. European Journal of Operational Research., 64, pp. 410–422. 24. Cui, Y. (2005). Dynamic programming algorithms for the optimal cutting of equal rectangles. Applied Mathematical Modeling., 29, pp. 1040-1053. 25. Cui, Y. (2006). Simplest optimal cutting patterns for equal rectangles. Operations Research Letters, 34, pp. 630-638. 26. Cheng, C.H.; Feiring, B.R.; Cheng, T.C. (1994). The cutting stock problem-a survey. International Journal of Production Economics., 36, pp. 291–305. 27. Dowsland, K.A.; Dowsland, W.B. (1992). Packing problems. European Journal of Operational Research., 56, pp. 2-14. 28. [82] Haessler, R.W.; Sweeney, P.E. (1991). Cutting stock problems and solution procedures. European Journal of Operational Research., 54, pp. 141-150. 29. Sweeney, P.E.; Paternoster, E.R. (1992). Cutting and packing problems: a categorized, application-orientated research bibliography. Journal of the Operational Research Society., 43, pp. 691-706. 30. Arenales, M.; Morabito, R. (1995). An AND/OR-graph approach to the solution of two-dimensional non-guillotine cutting problems. European Journal of Operational Research., 84, pp. 599-617. 31. Beasley, J.E. )1985(. An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure. Operation’s Research., Vol.33, No.1, PP.49-64. 32. Hadjiconstantinou, E.; Christofides, N. (1995). An exact algorithm for general, orthogonal, two-dimensional knapsack problems. European Journal of Operational Research., 83, pp. 39-56. 67 مطالعات مدیریت صنعتی، سال دهم، شماره 68 ، پاییز 19 33. Lai, K.K.; Chan, W.M. (1997). An evolutionary algorithm for the rectangular cutting stock problem. International Journal of Industrial Engineering., 4, pp. 130-139. 34. Tsai, R.D.; Malstrom, E.M.; Meeks, H.D. (1988). A twodimensional palletizing procedure for warehouse loading operations. IIE Transactions., 20, pp. 418-425. 35. Suliman, S.M.A. (2006). A sequential heuristic procedure for the two-dimensional cutting-stock problem. Int. J. Production Economics., 99, pp. 177–185. 36. Hadjiconstantinou, E.; Iori, M. (2007). A hybrid genetic algorithm for the two-dimensional single large object placement problem. European Journal of Operational Research., 183, pp. 1150-1166. 37. Ono, T.; Ikeda, T. (1998). Optimization of two-dimensional guillotine cutting by genetic algorithms. Proceedings of Sixth European Congress on Intelligent Techniques and Soft Computing. 38. Lai, K. K.; Chan, W.M. (1997). Developing a Simulated Annealing Algorithm for the Cutting Stock Problem. Computer and Industrial Engineering., Vol. 33, pp. 115-127. 39. Leung, T. W.; Yung, C. H.; Troutt Marvin, D. )2001(. Applications of Genetic Search and Simulated Annealing to the Two-dimensional Non-guillotine Cutting Stock Problem. Computer and Industrial Engineering., Vol. 40, pp. 201-214. 40. Beasley, J.W.(2000). A Population Heuristic for Constrained Two- Dimensional Non-Guillotine Cutting. http://mscmga.ms.ic.ac.uk/jebihtml. 41. Tiwari, S.; Chakraborti, N. (2006). Multi-objective optimization of a two-dimensional cutting problem using genetic algorithms. Journal of Materials Processing Technology., 173, pp. 384-393. 42. Jiang, J.Q.; Xing, X.L.; Yang, X.W.; Liang, Y.C. (2004). A Hybrid Algorithm Based on PSO and Genetic Operation and Its Applications For Cutting Stock Problem. Proceedings of The Third Int. Conference on Machine Learning and Cybernetics., Shangai, pp. 2198-2201. 43. Liu, B.; Wang, L.; & Jin, Y. H. (2008). An effective hybrid PSObased algorithm for flow shop scheduling with limited buffers. Computers and Operations Research, 35, pp. 2791–2806. 44. Chen, M. (2011). A hybrid ANFIS model for business failure prediction utilizating particle swarm optimization and subtractive clustering, Information Sciences. 45. Wang, H. S.; Che, Z. H.; & Wu, C. (2010). Using analytic hierarchy process and particle swarm optimization algorithm for evaluating product plans. Expert Systems with Applications, 37, pp. 1023– 1034. 46. Marinakis, Y.; Marinaki, M.; Doumpos, M.; & Zopounidis, C. (2009). Ant colony and particle swarm optimization for financial classification problems. Expert Systems with Applications, 36, pp. 10604–10611. 47. Onut, S.; Tuzkaya, U. R.; & Dog˘ac, B. (2008). A particle swarm optimization algorithm for the multiple-level warehouse layout design problem. Computers and Industrial Engineering, 54, pp. 783–799. حل مسأله ی برش دوبعدی غیرگیوتینی با... 67 48. Kennedy, J.; Eberhart, R. )1995(. Particle Swarm Optimization. in: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942-1948. 49. Shi, Y.; Eberhart, R.C. )1999 (. Empirical study of particle swarm optimization. in: Proc. IEEE Int. Congr. Evolutionary Computation., vol 3, pp. 101-106. 50. Jia, D.L.; Zheng, G. X.; Qu, B.Y.; & Khurram Khan, M. (2011). A hybrid particle swarm optimization algorithm for high-dimensional problems, Computers & Industrial Engineering. 51. Kiranyaz, S.; Pulkkinen, J.; & Gabbouj, M. (2011). Multidimensional particle swarm optimization in dynamic environments, Expert Systems with Applications, 38, pp. 2212–2223. 52. Shi, Y.; Liu, H.; Gao, L.; & Zhang, G. (2011). Cellular particle swarm optimization, Information Sciences, 181, pp. 4460–4493. 53. Chen, M.R.; Li, X.; Zhang, X.; & Lu, Y. Z. (2010). A novel particle swarm optimizer hybridized with extremal optimization, Applied Soft Computing, 10, pp. 367–373. 54. Liu, Y.; Wang, G.; Chen, H.; Dong, H.; Zhu, X.; & Wang, S. (2011). An Improved Particle Swarm Optimization for Feature Selection, Journal of Bionic Engineering, 8, pp. 191–200 55. Liua, B.; Wanga, L.; Liud, Y.; Qiane, B.; & Jin, Y. H. (2010). An effective hybrid particle swarm optimization for batch scheduling of polypropylene processes, Computers and Chemical Engineering, 34, pp. 518–528 56. Robati, A.; Barani, G. A.; Nezam Abadi Pour, H.; Fadaee, M. J.; Rahimi Pour Anaraki, J. (2011). Balanced fuzzy particle swarm optimization, Applied Mathematical Modelling. 57. Poli, R.; Kennedy, J. )2007(. Particle swarm optimization An overview.Springer Science., pp. 33–57. 58. Navalertporn, T.; Afzulpurkar, N.V. (2011). Optimization of tile manufacturing process using particle swarm optimization, Swarm and Evolutionary Computation, 1 , pp. 97–109. 59. Alatas, B.; Akin, E. A.; Ozers, B.l. (2007). Chaos-embedded particle swarm optimization algorithms,Chaos, Solitons and Fractals. 60. Shi, Y.; Eberhart, R.C. ) 1998(. A modified particle swarm optimizer[C]. In: IEEE World Congress on Computational Intelligence., pp. 69-73. 61. Wang, K.P.; Huang, L.; Zhou, C.G.; Pang, W. (2003). Particle Swarm Optimization For Traveling Salesman Problem. Proceedings of The Second International Conference on Machine Learning and Cybernetics, Xi’an, pp. 1583-1585. 62. Wang, C.; Zhang, J.; Yang, J.; Hu, C.; Liu, J. (2005). A Modified Particle Swarm Optimization Algorithm and its Application for Solving Traveling Salesman Problem. Neural Networks and Brain., ICNN&B '05. Int. Conference on, 2, pp. 689-694. 63. Soke, A.; Bingul, Z. Applications of Discrete PSO Algorithm to Two-Dimensional Non-Guillotine Rectangular Packing Problems. Conf. on Genetic and Evolutionary Methods. 68 مطالعات مدیریت صنعتی، سال دهم، شماره 68 ، پاییز 19 64. Malviya, R.; Kumar Pratihar, D. (2011). Tuning of neural networks using particle swarm optimization to model MIG welding process, Swarm and Evolutionary Computation. 65. Jakobs, S. (1996). On genetic algorithms for the packing of polygons. European Journal of Operational Research, 88, pp. 165- 181 | ||
|
آمار تعداد مشاهده مقاله: 3,029 تعداد دریافت فایل اصل مقاله: 1,649 |
||