بهداد، محمد، دهقانی، تکتم، ذاکر تم یی، مهناز ) 4189 (م رویکردی نامی در زماان بنادی
درس ها ی دانشگاه با استفاده از الگامریتم ژنتصاکم دوازدهماص کنفاران باص المللای انهما
کامیصمتر ایران دانشگاه شهصد بهشتی، دانشکده مهندسی برق و کامیصمتر ،تهران، ایرانم
جاامدکی، مهصااد، منتظااری، محماادعلی، ممساامی، سااصد رساامل ) 4151 (م بررساای مساااله
زمان بندی درسی دانشاگاهی باا اساتفاده از ترکصاب الگامریتم ممتصاک بهبمدیافتاه و الگامریتم
سردشدن شبصه سازی شدهم مهندسی برق و مهندسی کامیصمتر ایران، دوره 5، شاماره 1، صا م
452 212 م -
خاتمی فصروز آبادی،ع، رحصمی مزرعه شااهی،م ، محتشامی،ع ) 4189 (م مادل ساازی مسا اله
زمان بندی دوره های تحصصلی در یک ممسسه آممزشی کمچکم مطالعاات مادیریت صانعتی
شماره 41 ، ص 91 25 م -
سلصمی فرد، خداکرم، بابایی زاده، سلمان ) 4151 (م یک سصستم پشتصبانی تصمصم بارای زماان
بندی کلاسهای دانشگاهم مدیریت فناوری اطلاعات، دوره 1، شماره 1، ص 11 55 م -
منهمی، سصد امصر حسص ، مسعمدیان، سملماز، استکی، افسانه، نعمت بخش، ناصار ) 4188 (م
طراحی جدول زمان بندی خمدکار برای درس ها دانشگاهی با استفاده از الگمریتم های ژنتصکم
فناوری آممزش، دوره 1، شماره 2، ص 441 421 م -
Agarwal, A., Colak, S., & Erenguc, S. (2011). A neurogenetic approach for the resource-constrained project scheduling problem. Computers & Operations Research, 38 (1), 44-50.
Akkoyunlu, E. A. (1973). A linear algorithm for computing the optimum university timetable. The Computer Journal, 16 (4), 347-350.
Alzaqebah, M., & Abdullah, S. (2015). Hybrid bee colony optimization for examination timetabling problems. Computers &
Operations Research, 54, 142-154.
Al-Betar, M. A., Khader, A. T., & Zaman, M. (2012). University course timetabling using a hybrid harmony search metaheuristic algorithm. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 42 (5), 664-681.
Al-Yakoob, S. M., & Sherali, H. D. (2007). A mixed-integer programming approach to a class timetabling problem: A case study with gender policies and traffic considerations. European Journal of Operational Research, 180 (3), 1028-1044.
Badoni, R. P., Gupta, D. K., & Mishra, P. (2014). A new hybrid algorithm for university course timetabling problem using events based on groupings of students. Computers & Industrial Engineering, 78, 12-25.
Badri, M. A., Davis, D. L., Davis, D. F., & Hollingsworth, J. (1998). A multi-objective course scheduling model: Combining faculty preferences for courses and times. Computers & operations research, 25 (4), 303-316.
Barrera, D., Velasco, N., & Amaya, C. A. (2012). A network-based approach to the multi-activity combined timetabling and crew scheduling problem: Workforce scheduling for public health policy implementation. Computers & Industrial Engineering, 63 (4), 802-812.
Basir, N., Ismail, W., & Norwawi, N. M. (2013). A Simulated Annealing for Tahmidi Course Timetabling. Procedia Technology, 11, 437-445.
Daskalaki, S., Birbas, T., & Housos, E. (2004). An integer programming formulation for a case study in university timetabling. European Journal of Operational Research, 153 (1), 117-135.
De Causmaecker, P., Demeester, P., & Berghe, G. V. (2009). A decomposed metaheuristic approach for a real-world university
timetabling problem. European Journal of Operational Research, 195 (1), 307-318.
Hao, J. K., & Benlic, U. (2011). Lower bounds for the ITC-2007 curriculum-based course timetabling problem. European Journal of Operational Research, 212 (3), 464-472.
Kahar, M. M., & Kendall, G. (2010). The examination timetabling problem at Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing software solution. European Journal of Operational Research, 207 (2), 557-565.
Kaspi, M., & Raviv, T. (2013). Service-oriented line planning and timetabling for passenger trains. Transportation Science, 47 (3), 295-311.
Kostuch, P. (2005). The university course timetabling problem with a three-phase approach. In Practice and Theory of Automated Timetabling V (pp. 109-125). Springer Berlin Heidelberg.
Mcmullan, P. (2007). An extended implementation of the great deluge algorithm for course timetabling. In Computational Science–ICCS 2007 (pp. 538-545). Springer Berlin Heidelberg.
MirHassani, S. A., & Habibi, F. (2013). Solution approaches to the course timetabling problem. Artificial Intelligence Review, 39 (2), 133-149.
Nothegger, C., Mayer, A., Chwatal, A., & Raidl, G. R. (2012). Solving the post enrolment course timetabling problem by ant colony optimization. Annals of Operations Research, 194 (1), 325-339.
Nurmi, K., Goossens, D., & Kyngäs, J. (2013). Scheduling a triple round robin tournament with minitournaments for the Finnish national youth ice hockey league. Journal of the Operational Research Society, 65 (11), 1770-1779.
Phillips, A. E., Waterer, H., Ehrgott, M., & Ryan, D. M. (2015). Integer programming methods for large-scale practical classroom
assignment problems. Computers & Operations Research, 53, 42-53.
Pita, J. P., Barnhart, C., & Antunes, A. P. (2012). Integrated flight scheduling and fleet assignment under airport congestion. Transportation Science, 47 (4), 477-492.
Post, G., Kingston, J. H., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngas, J., ... & Schaerf, A. (2014). XHSTT: an XML archive for high school timetabling problems in different countries. Annals of Operations Research, 218 (1), 295-301.
Shafia, M. A., Aghaee, M. P., Sadjadi, S. J., & Jamili, A. (2012). Robust Train Timetabling problem: Mathematical model and Branch and bound algorithm. Intelligent Transportation Systems, IEEE Transactions on, 13 (1), 307-317.