Anon., n.d. Html Document Set. [Online]
Available at: http://www.pedal.rdg.ac.uk/banksearchdataset [Accessed 2013]
Ashraf, F. & Zyer, T. O., 2008. Employing Clustering Techniques for Automatic Information Extraction from HTML Documents. IEEE Transactions on Syst.Man.Cyber, 38(5), pp. 660-673.
Azad, H. K. & Abhishek, K., 2014. Semantic-synaptic web mining: A novel model for improving the web mining. In Communication Systems and Network Technologies (CSNT),. s.l., s.n., pp. 454-457.
Buttler, D., Liu, L. & Pu, C., 2001. A fully automated object extraction system for the world wide web. s.l., s.n., pp. 361-370.
Crescenzi, S. V., Mecca, G., Merialdo, P. & Missier, P., 2004. An automatic data grabber for large Web sites. s.l., s.n., pp. 1321-1324.
Embley, D. W., Tao, C. & Liddle, S. W., 2005. Automating the extraction of data from HTML tables with unknown structure. Data Knowledge Engineering, 54(1), pp. 3-28.
Ferrara, E., De Meo, P., Fiumara, G. & Baumgartner, R., 2014. Web data extraction, applications and techniques: A survey.. Knowledge-Based Systems, Volume 70, pp. 301-323.
Feyzi, K., Sabet Motlagh, M. & Abedini naeini, M., 1393. Using an integrated approach of QFD, FAHP, VIKOR to select the most suitable ERP system. Journal of Management Studies Information Technology, pp. 1-20.
Gamare, P. S. & Patil, G. A., 2015. Efficient Clustering of Web Documents Using Hybrid Approach in Data Mining. s.l., IEEE.
Gulli, A. & Signorini, A., 2005. The indexable web is more than 11.5 bilion pages. s.l., s.n., pp. 902-903.
Gupta, M. & Garg, K., 2016. Attribute Weighted K-means For Document Clustering. International Research Journal of Engineering and Technology, 3(6), pp. 1583-1590.
Junjie, W., Xiong, H. & Jian, C., 2009. Towards understanding hierarchical clustering: A data distribution perspective. Neurocomputing, pp. 2319-2330.
Labsky, M., Svatek, V., Praks, P. & Svab, O., 2005. Information extraction from HTML product catalogues: Coupling quantitative and knowledge-based approaches. Dagstuhl, Germany, s.n.
Na, S., Xumin, L. & Yong, G., 2010. Research on k-means clustering algorithm: An improved k-means clustering algorithm. In Intelligent Information Technology and Security Informatics (IITSI). s.l., 2010 IEEE Third International Symposium, pp. 63-67.
Sandhya, N., Govardhan, A. & Rameshchandra, G., 2016. Concept Based Text Document Clustering with Vector Suffix Tree Document Model. International Journal of Computer Science and Information Security, 14(7), p. 259.
Shareghi, E., Petri, M., Haffari, G. & Cohn, T., 2015. Compact, Efficient and Unlimited Capacity: Language Modeling with Compressed Suffix Trees. s.l., s.n., pp. 2409-2418.
Spengler, A. & Gallinari, P., 2010. Document structure meets page layout: loopy random fields for web news content extraction. s.l., s.n., pp. 150-160.
Steinbach, M., Karypis, G. & Kumar, V., 2000. A comparison of document clustering techniques. s.l.:s.n.
Tar, H. H. & Nyunt, T. S., 2011. Ontology-based concept weighting for text documents. World Academy of Science, engineering and Technology, Volume 57, pp. 249-253.
Xiaolin, Y., Xiao, Z., Nan, K. & Fengchao, Z., 2013. An improved Single-Pass clustering algorithm internet-oriented network topic detection. s.l., Intelligent Control and Information Processing (ICICIP), pp. 560-564.
Zhuang, Y. & Chen, Y., 2015. Improving Suffix Tree Clustering Algorithm for Web Documents. s.l., IEEE.