Allison, P. D. (2003). Missing Data Techniques for Structural Equation Modeling. Journal of Abnormal Psychology, 112(4), 545–557.
Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1-38.
Enders, C. K. (2001). A primer on maximum likelihood algorithms available for use with missing data.Structrual Equation Modeling, 8(1), 128-141.
Enders, C. K. (2010). Applied missing data analysis. The Guilford Press. New York, London.
Enders, C. K., Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structrual Equation Modeling, 8(3), 430–457.
Finkbeiner, C. (1979). Estimation for the multiple factor model when data are missing. Psychometrika, 44(4), 409–420.
Han, K. T., Guo, F. (2014). Impact of violation of the missing-at-random assumption on full-information maximum likelihood method in multidimensional adaptive testing. Practical Assessment, Research and Evaulation, 19(2).
Hoyle, R. H. (2012). Handbook of structural equation modeling. The Guilford Press. New York, London.
Little, R. J. A., Rubin, D. B. (2002). Statistical analysis with missing data, 2nd Edition. New York: John Wiley.
Khine, M. S. (2013). Application of structural equation modeling in educational research and practice. Sense Publishers.
Muthén, B., Kaplan, D., Hollis, M. (1987). On structural equation modeling with data that are not missing completely at random. Psychometrika, 52(3), 431–462.
Olinsky, A., Chen, S., Harlow, L. (2003). The comparative efficacy of imputation methods for missing data in structural equation modeling. European Journal of Operational Research, 151, 53–79.
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–59.