| تعداد نشریات | 61 |
| تعداد شمارهها | 2,211 |
| تعداد مقالات | 17,984 |
| تعداد مشاهده مقاله | 55,243,728 |
| تعداد دریافت فایل اصل مقاله | 28,910,746 |
ارائه یک مدل برنامه ریزی ریاضی برای مسئله چیدمان تسهیلات پویا با در نظر گرفتن وسایل حمل کننده | ||
| مطالعات مدیریت صنعتی | ||
| دوره 18، شماره 57، تیر 1399، صفحه 43-99 اصل مقاله (2.01 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22054/jims.2019.26435.1906 | ||
| نویسندگان | ||
| شمس الدین حسینی1؛ پرهام عظیمی* 2؛ مانی شریفی3؛ مصطفی زندیه4 | ||
| 1دانشجوی دکتری مهندسی صنایع، دانشکده مهندسی صنایع و مکانیک، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران | ||
| 2دانشیار، دکتری مهندسی صنایع، دانشکده مهندسی صنایع و مکانیک، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران | ||
| 3استادیار، دکتری مهندسی صنایع، دانشکده مهندسی صنایع و مکانیک، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران | ||
| 4دانشیار گروه مدیریت صنعتی دانشگاه شهید بهشتی | ||
| چکیده | ||
| هدف مسئله چیدمان تسهیلات پویا، یافتن بهترین چیدمان برای تسهیلات در یک افق زمانی با تعدادی دوره زمانی مشخص است به گونه ای که مجموع هزینه های حمل مواد و جابجایی تسهیلات حداقل گردد. این نوشتار به توسعه یک مدل دو هدفه می پردازد و سعی دارد تا به طور همزمان هزینه انتقال مواد بین تسهیلات و هزینه جابجایی تسهیلات و نیز زمان مورد نیاز برای حمل مواد را کمینه کند. با توجه به احتمالی بودن مشخصات کارکردی حمل کننده ها، مانند زمان انجام عملیات حمل و وجود خرابی، محاسبه زمان مورد نیاز برای حمل مواد با استفاده از روابط تحلیلی امکان پذیر نمی باشد؛ بنابراین این نوشتار از رویکرد شبیه سازی و شبکه های عصبی مصنوعی استفاده می کند. در این رویکرد ابتدا سناریوهای زیادی از ترکیب سطوح مختلف متغیرها ایجاد می شود که هر سناریو نشان دهنده مکان تسهیلات و چگونگی انجام عملیات های حمل در هر دوره است. سپس هر یک از این سناریوها از طریق شبیه سازی کامپیوتری اجرا و نتایج حاصل از شبیه سازی به عنوان متغیر پاسخ در نظر گرفته می شود. در نهایت با استفاده از متغییرهای ورودی و پاسخ، یک شبکه عصبی مصنوعی تربیت می شوند تا بتواند زمان انجام عملیات های حمل را به خوبی براورد کرد. با توجه به که این مساله در درجه پیچیدگی سخت قرار می گیرد، این نوشتار استفاده یک الگوریتم فراابتکاری جدید را برای بهینه سازی مسئله پیشنهاد می دهد و کارایی الگوریتم پیشنهادی را با الگوریتم های موجود در ادبیات مقایسه می کند. | ||
| کلیدواژهها | ||
| مساله چیدمان تسهیلات پویا؛ شبیه سازی؛ شبکه های عصبی مصنوعی؛ الگوریتم های فراابتکاری چند هدفه | ||
| مراجع | ||
|
Aiello G., Enea M., Galante G., (2006), A multi-objective approach to facility layout problem by genetic search algorithm and Electre method, Robotics and Computer-Integrated Manufacturing 22,447–455.
Al Jadaan O., Rao C.R., Rajamani L., (2008), “Non-Dominated ranked genetic algorithm for solving Multi-Objective optimization problems: NRGA”, Journal of Theoretical and Applied Information Technology, 60-67.
Azevedo, M.M., Crispim, J.A., Pinho. J., (2017). A dynamic multi-objective approach for the reconfigurable multi-facility layout problem. Journal of Manufacturing Systems, 42,140-152.
Azimi P., Charmchi H.R., (2010), A new optimization via simulation approach for dynamic facility layout problem with budget constraints, Modelling and Simulation in Engineering 2012, 1-9.
Balakrishnan, J., Cheng, C.H., (1998). Dynamic layout algorithms: A state-of-the-art survey. Omega 26 (4), 507–521.
Baykasoglu A., Dereli T., Sabuncu, I., (2006), An ant colony algorithm for solving budget constrained and unconstrained dynamic facility layout problems, Omega 34(4), 385–396.
Baykasoglu, A., & Gindy, N. N. Z. (2001). A simulated annealing algorithm for dynamic facility layout problem. Computers and Operations Research, 28(14), 1403–1426.
Benjaafar, S., Heragu, S. S., & Irani, S. A. (2002). "Next generation factory layouts", Research challenges and recent progress. Interface, 32(6), 58–76.
Conway, D. G., & Venkataramanan, M. A. (1994). Genetic search and the dynamic facility layout problem. Computers and Operations Research, 21(8), 955– 960.
Deb, K., Agrawal, S., Pratap. A. and Meyarivan. T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197
Deyi, L., Haijun, M., & Xuemei, S. (1995). Membership clouds and membership cloud generators, Computer Research and Development, 32(6), 15–20.
Dileep R. Sule, (2009), "Manufacturing Facilities, Locations, Planning and Design", 3rd Edition, CRC Press.
El-Baz M. Adel R., (2004), A genetic algorithm for facility layout problems of different manufacturing environments, Computers and Industrial Engineering 47,233–246
El-Rayes K., Said H., (2009), Dynamic site layout planning using approximate dynamic programming, Journal of Computing in Civil Engineering, 23(2), 119-127.
Guan J., Lin G., (2016), Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem, European Journal of Operational Research 248 (3), 899–909.
Lacksonen, T.A. and Enscore, E.E (1993), Quadratic Assignment Algorithms for the Dynamic Layout Problem. International Journal of Production Research. Vol.31, No. 3, 503-517.
Lawrence M, Petterson A .1998. BrainMaker User’s Guide and Reference Manual, 7 th Edition. California Scientific Software, Nevada City, CA 95959
Marvin A.A., Sukran N.K., Basheer M.K., (2006), An empirical comparison of tabu search, simulated annealing, and genetic algorithms for facilities location problems, International Journal of Production Economies, 103, 742–754.
McKendall, A.R., Shang, J., Kuppusamy, S., (2006). Simulated annealing heuristics for the dynamic facility layout problem. Computers and Operations Research, 33 (8), 2431–2444.
Mir, M., Imam, M. H. (2001). A hybrid optimization approach for layout design of unequal-area facilities. Computers & Industrial Engineering, 39(1–2), 49–63.
Neghabi, H., Tari, F.G., (2016), A new concept of adjacency for concurrent consideration of economic and safety aspects in design of facility layout problems, Journal of Loss Prevention in the Process Industries 40, 603–614
Paes, F.G., Pessoa, A.A., Vidal, T., (2017), A hybrid genetic algorithm with decomposition phases for the unequal Area Facility Layout Problem, European Journal of Operational Research 256 (3), 742–756.
Rosenblatt MJ., (1986). The dynamics of plant layout. Management Science; 32(1):76–86.
Samarghandi, H., Eshghi, K., (2010), An efficient tabu algorithm for the single row facility layout problem. European Journal of Operational Research 205:98–105.
Tavakkoli-Moghaddam R., Shayan E., (1998), Facilities layout design by genetic algorithms, Computers and Industrial Engineering 35 (3-4) ,527-530.
Tompkins, J. A. White, J. A. Bozer, Y. A. Frazelle, E. H., Tanchoco, J. M., Trevino, J (1996), "Facilities planning”, New York: Wiley.
Ulutas B., Islier A., (2015), Dynamic facility layout problem in footwear industry, Journal of Manufacturing Systems 36, 55–61.
Urban, T. L. (1993). A heuristic for the dynamic facility layout problem. IIE Transactions, 25(4), 57–63.
Urban, T. L. (1998). Solution procedures for the dynamic facility layout problem. Annals of Operations Research, 76(1), 323–342.
Wang, S., Zuoa, X., Liua, X., Zhaoc, X., Li, J., (2015), Solving dynamic double row layout problem via combining simulated annealing and mathematical programming, Applied Soft Computing 37, 303–310.
Xu, J., Song, X., (2015), Multi-objective dynamic layout problem for temporary construction 4 facilities with unequal-area departments under fuzzy random, Knowledge-Based Systems 81, 30–45.
| ||
|
آمار تعداد مشاهده مقاله: 1,355 تعداد دریافت فایل اصل مقاله: 1,409 |
||