[1] Albaness and Campolieti. (2005), Advanced Derivatives Pricing and Risk Management: Theory, Tools and Hans-on Programming Application, Academic Press,Elsevier Science. USA.
[2] Andersen L. and J., Andreasen. (2000), Jump Diffusion Models: Volatility Smile Fitting and Numerical Methods for Pricing. Review of Derivatives Research ,4,231-262.
[3] Birkohff, Garrett. (1998), Ordinary Differential Equations, New York.
[4] Black, F., Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political economy, 81(3), 637-654.
[5] Brownlees, C. T., Gallo, G. M. (2010). Comparison of volatility measures: a risk management perspective. Journal of Financial Econometrics, 8(1), 29-56.
[6] Campolieti and R. Makarov. (2006), On Properties of Analytically Solvable Families of Local Volatility Diffusion Models.
[7] Hull, John C. (2018), Fundamentals of Futures and Options Markets and Derivatives Package, 10th Edition, Prentice Hall.
[8] Jin-Chuan Duan, Ivilina Popova and Peter Ritchken. (2002), Option Pricing Under Regime Switching,Quantitative Finance,2, pp. 1-17.
[9] Karimnejad Esfahani, M., Neisy, A., De Marchi, S. (2020). An RBF approach for oil futures pricing under the jump-diffusion model. Journal of Mathematical Modeling, 1-12.
[10] Klugman S. A., H. H. Panjer, G. E. Willmot. (2005), Loss Model from Data to Decisions, Wiley, USA.
[11] Kou S. G. and Hui Wang. (2003), First Passage Times of a Jump Diffusion Process. Adv. Appl. Prob., Vol 35, pp. 504.
[12] Kou S. G., A (2002). Jump-Diffusion Model for Option Pricing. Management Science, 48, No. 8, pp. 1086-1101.
[13] Laura-Diana Radu. (2009). Qualitative, Semi-Quantitative and, Quantitative Methods for Risk Assessment: Case Of The Financial Audit, Analele Stiinti ceale Universitatii "Alexandru Ioan Cuza" din Iasi - Stiinte Economice, Alexandru
Ioan Cuza University, Faculty of Economics and Business Administration, vol. 56, pages 643-657, November.
[14] Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of economics and management science, 141-183.
[15] Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of nancial economics, 3(1-2), 125-144.
[16] Mohamadinejad, Reyhane Biazar, Jafar Neisy, Abdolsadeh. (2020). Spread Option Pricing Using Two Jump-Diffusion Interest Rates. UPB Scienti c Bulletin, Series A: Applied Mathematics and Physics. 28.
[17] Oksendal, Bernt. (1998), Stochastic Differential Equations, Springer-Verlag Berlin Heidelberg.
[18] Peymany, M., Hooshangi, Z. (2017). Estimation and Comparison of Short-TermInterest Rate Equilibrium Models Using Islamic Treasury Bills. Financial Engineering and Portfolio Management, 8(33), 89-111.Wilmott, Paul. (2006), Paul Wilmotton quantitative nance, Wiley Sons.