تعداد نشریات | 56 |
تعداد شمارهها | 1,661 |
تعداد مقالات | 13,217 |
تعداد مشاهده مقاله | 25,450,084 |
تعداد دریافت فایل اصل مقاله | 16,430,070 |
A Simple Gibbs Sampler for learning Bayesian Network Structure | ||
Journal of Computational Statistics and Modeling | ||
دوره 1، شماره 2، اسفند 2021، صفحه 87-97 اصل مقاله (386.45 K) | ||
نوع مقاله: origenal | ||
شناسه دیجیتال (DOI): 10.22054/jcsm.2021.55657.1022 | ||
نویسنده | ||
Vahid Rezaei Tabar ![]() | ||
Department of Statistics, Faculty of Statistics, Mathematics and Computer Sciences, Allameh Tabataba'i University, Tehran, Iran | ||
چکیده | ||
The aim of this paper is to learn a Bayesian network structure for discrete variables. For this purpose, we introduce a Gibbs sampler method. Each sample represents a Bayesian network. Thus, in the process of Gibbs sampling, we obtain a set of Bayesian networks. For achieving a single graph that represents the best graph fitted on data, we use the mode of burn-in graphs. This means that the most frequent edges of burn-in graphs are considered to indicate the best single graph. The results on the well-known Bayesian networks show that our method has higher accuracy in the task of learning a Bayesian network structure. | ||
کلیدواژهها | ||
Bayesian Network؛ Gibbs sampling؛ Burn-in graphs | ||
آمار تعداد مشاهده مقاله: 26 تعداد دریافت فایل اصل مقاله: 85 |