[1] Allman, E. S., C. Matias, and J. A. Rhodes. 2009. Identi ability of parameters in latent structure models with many observed variables. The Annals of Statistics 37 (6A):3099132.:10.1214/09-AOS689.
[2] Carroll, R. J., and P. Hall. 1988. Optimal rates of convergence for deconvolving a density. Journal of the American Statistical Association 83 (404):11846. :10.2307/2290153.
[3] DasGupta, A. 2008. Mixture Models and Nonparametric Deconvolution. In Asymptotic Theory of Statistics and Probability, 57191. New York: Springer.
[4] De Veaux, R. D. 1989. Mixtures of linear regressions. Computational Statistics & Data Analysis, 8(3), 227-45. :10.1016/0167-9473(89)90043-1.
[5] Dias, J. G., and M. Wedel. 2004. An empirical comparison of EM, SEM and MCMC performance for problematic Gaussian mixture likelihoods. Statistics and Computing, 14(4), 323-32.:10.1023/B:STCO.0000039481.32211.5a.
[6] Elmore, R., P. Hall, and A. Neeman. 2005. An application of classical invariant theory to identi ability in nonparametric mixtures. In Annales de l'institut Fourier 55 (1):128. :10.5802/aif.2087.
[7] Eskandari, F., and E. Ormoz. 2016. Finite Mixture of Generalized Semiparametric Models: Variable Selection via Penalized Estimation. Communications in Statistics-Simulation andComputation, 45(10), 3744-59.:10.1080/03610918.2014.953687.
[8] Fan, J. 1991. On the optimal rates of convergence for nonparametric deconvolution problems.The Annals of Statistics, 1257-72. :10.1214/aos/1176348248.
[9] Faria, S., and G. Soromenho. 2010. Fitting mixtures of linear regressions. Journal of Statistical Computation and Simulation, 80 (2):20125. :10.1080/00949650802590261.
[10] Faria, S., and G. Soromenho. 2012. Comparison of EM and SEM algorithms in Poisson regression models: A simulation study. Communications in Statistics-Simulation and Computation, 41(4): 497509. :10.1080/03610918.2011.594534.
[11] Frank, I.E., and J.H Friedman. 1993. An Statistical View of Some Chemometrics Regression Tools. Technometrics, 35, 109-135. : 10.1080/00401706.1993.10485033.
[12] Hall, P., A. Neeman, R. Pakyari, and R. Elmore. 2005. Nonparametric inference in multivariate mixtures. Biometrika 92(3), 667-78. :10.1093/biomet/92.3.667.
[13] Hall, P., and X. H. Zhou. 2003. Nonparametric estimation of component distributions in a multivariate mixture. The Annals of Statistics 31 (1):20124. :10.1214/aos/1046294462.
[14] Hawkins, D. S., D. M. Allen, and A. J. Stromberg. 2001. Determining the number of components in mixtures of linear models. Computational Statistics & Data Analysis 38(1), 15-48.:10.1016/S0167-9473(01)00017-2.
[15] Hoerl, A. E, and Kennard R. W.1970. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55-67. : 10.1080/00401706.1970.10488634.
[16] Jacobs, R. A., Jordan, M. I., Nowlan, S. J. and Hinton, G. E. 1991. Adaptive mixture of local experts. Neural Computation 3, 79-87. : 10.1162/neco.1991.3.1.79.
[17] Jiang, W. and Tanner, M. A. 1999. Hierarchical mixtures-of-experts for exponential family regression models: Approximation and maximum likelihood estimation. The Annals of Statistics 27, 987-1011. : 10.1214/aos/1018031265.
[18] Jones, P. N., and G. J. McLachlan. 1992. Fitting nite mixture models in a regression context. Australian Journal of Statistics 34 (2):23340. :10.1111/j.1467-842X.1992.tb01356.x.
[19] McDonald, G. C., and D.I. Galarneau. 1975. A monte carlo evaluation of ridgetype estimators. Journal of the American Statistical Association 70 (350):40716. :10.1080/01621459.1975.10479882.
[20] McLachlan, G. J. and Peel, D. (2000), Finite Mixture Models, New York: Wiley.
[21] Nguyen, X. 2013. Convergence of latent mixing measures in nite and in nite mixture models. The Annals of Statistics 41 (1):370400. :10.1214/12-AOS1065.
[22] Pearson, K. 1894. Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London. A 185:71110. :10.1098/rsta.1894.0003.
[23] Pollard, D. 1991. Asymptotics for Least Absolute Deviation Regression Estimators. Econometric Theory 18699. : 10.1017/S0266466600004394.
[24] Quandt, R. E., and J. B. Ramsey. 1978. Estimating mixtures of normal distributions and switching regressions. Journal of the American statistical Association 73 (364):7308.:10.2307/2286266.
[25] Rezazadeh, H., F. Eskandari, M. Bameni Moghadam and E. Ormoz. 2020. Variable selection in nite mixture of generalized estimating equations.Communications in Statistics - Simulation and Computation.:10.1080/03610918.2019.1711406.
[26] Rousseau, J., and K. Mengersen. 2011. Asymptotic behaviour of the posterior distribution in over tted mixture models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (5):689710. :10.1111/j.1467-9868.2011.00781.x.
[27] Schepers, J. 2015. Improved random-starting method for the EM algorithm for nite mixtures of regressions. Behavior research methods 47 (1):13446.
[28] Searle, S. R. 1997. Linear models. Hoboken, New Jersey: John Wiley & Sons.
[29] Teicher, H. 1961. Identi ability of mixtures. The Annals of Mathematical Statistics 32 (1):2448.
[30] Teicher, H. 1963. Identi ability of nite mixtures. The Annals of Mathematical Statistics 34 (4): 12659.:10.1214/aoms/1177703862.
[31] Tibshirani, R. 1996. Regression shrinkage and selection via the Lasso. Journ al of the Royal Statistical Society, Series B58, 267-88. : 10.1111/j.2517-6161.1996.tb02080.x.
[32] Xu, L., N. Lin, B. Zhang, and N. Shi. 2012. A Finite mixture model for working correlation matrices in generalized estimating equations. Statistica Sinica 22 (2):75576.:10.5705/ss.2010.090.
[33] Yakowitz, S. J., and J. D. Spragins. 1968. On the identi ability of nite mixtures. The Annals of Mathematical Statistics 39 (1):20914. :10.1214/aoms/1177698520.
[34] Zhang, C. H. 1990. Fourier methods for estimating mixing densities and distributions. The Annals of Statistics 18 (2):80631. :10.1214/aos/1176347627.
[35] Zhu, H. T., and H. Zhang. 2004. Hypothesis testing in mixture regression models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66 (1):316. :10.1046/j.1369-7412.