تعداد نشریات | 57 |
تعداد شمارهها | 1,796 |
تعداد مقالات | 14,251 |
تعداد مشاهده مقاله | 30,606,246 |
تعداد دریافت فایل اصل مقاله | 19,160,283 |
بررسی شاخصهای اعتبارسنجی مشتریان بانکی با استفاده از روش هوش مصنوعی و دلفی | ||
مطالعات مدیریت کسب و کار هوشمند | ||
دوره 11، شماره 42، دی 1401، صفحه 237-265 اصل مقاله (1.28 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22054/ims.2022.15520 | ||
نویسندگان | ||
سلیمه قنبری ![]() | ||
1مربی، گروه گردشگری و هتلداری، مجتمع آموزش عالی بم، بم، ایران نویسنده مسئول : s.ghanbari@bam.ac.ir | ||
2استاد، گروه مهندسی برق، دانشگاه شهید باهنر، کرمان، ایران | ||
3استاد، گروه اقتصاد، دانشگاه شهید باهنر، کرمان، ایران | ||
چکیده | ||
با توجه به اهمیت اعطای اعتبار در نظام بانکی، استفاده از عوامل مؤثر بر اعتبارسنجی جهت تصمیمگیری در اعتباردهی، بسیار مهم است. با توجه به این مهم، تحقیق حاضر به شناسایی و اولویتبندی ویژگیهای تأثیرگذار در اعتبارسنجی مشتریان با استفاده از دیدگاه متخصصان و کارشناسان بانکی شهر کرمان و تطابق آن با شاخصهای موجود در مدلهای استخراجشده از روش هوش مصنوعی پرداخته است. هدف این است که آیا بین نظرات انسانی که ناشی از دانش و تجربه است و نظرات هوش مصنوعی که به مسئله بهصورت مدلسازی جعبه سیاه نگاه میکنند، تطابق وجود دارد یا خیر. دادههای موردنیاز به روش پرسشنامه و الگوریتم باینری کوانتومی جمعیت ذرات، جمعآوریشده و به ترتیب به روش دلفی و فرا ابتکاری موردبررسی قرارگرفتهاند. نتایج حاکی از آن است که شاخصهای منتخب دو روش 80 درصد همپوشانی داشتهاند. با توجه به نتایج تحقیق و دقت بالای تکنیکهای هوش مصنوعی، پیشنهاد میشود جهت اعطای اعتبار به مشتریان در بانکها و مؤسسات مالی و اعتباری، وزن بالاتری برای شاخصهای مذکور لحاظ شود. | ||
کلیدواژهها | ||
اعتبارسنجی؛ دلفی؛ الگوریتم فرا ابتکاری؛ بازشناسی الگو؛ انتخاب ویژگی | ||
مراجع | ||
آذر، عادل.، فرجی، حجت. (1381). علم مدیریت فازی، تهران، اجتماع.
تقوی فرد، محمدتقی.، نادعلی، احمد. (1391). طبقهبندی متقاضیان تسهیلات اعتباری بانکی با استفاده از دادهکاوی و منطق فازی، فصلنامه مطالعات مدیریت صنعتی، 25، 85 - 108.
جلیلی، محمد.، خدایی وله زاقرد، محمد.، کنشلو، مهدیه. (1389). اعتبارسنجی مشتریان حقیقی در سیستم بانکی کشور، مطالعات کمی در مدیریت، 1 (3)، 127-148.
راعی، رضا.، فلاحپور، سعید (1387). کاربرد ماشین بردار پشتیبان در پیشبینی درماندگی مالی شرکتها با استفاده از نسبتهای مالی، بررسیهای حسابداری و حسابرسی، 15 (53)، 17-34.
رجبزاده قطری، علی.، میرزایی آرش، بهرام.، احمدی، پرویز. (1388). طراحی سیستم هوشمند ترکیبی رتبهبندی اعتباری مشتریان بانکها با استفاده از مدلهای استدلالی فازی ترکیبی، پژوهشنامه بازرگانی، 14 (53)، 159 - 201.
صالحی، مجتبی.، کرد کتولی، علیرضا. (1396). انتخاب ویژگیهای بهینه بهمنظور تعیین ریسک اعتباری مشتریان بانکی. مطالعات مدیریت کسبوکار هوشمند،6 (22)، 129-154. https://doi.org/10.22054/ims.2018.8523
قدسی پور، حسن.، سالاری، میثم .، دلاوری، وحید. (1391). ارزیابی ریسک اعتباری شرکتهای وامگیرنده از بانک با استفاده از تحلیل سلسله مراتبی فازی و شبکه عصبی ترکیبی درجه بالا، نشریه بینالمللی مهندسی صنایع و مدیریت تولید، 23 (1)، 43- 54.
نظامآبادیپور، حسین. (1392). الگوریتم وراثتی: مفاهیم پایه و مباحث پیشرفته، انتشارات دانشگاه شهید باهنر کرمان.
هاشمی تیله نویی، مصطفی.، حسینزاده، صبا. (1399). بررسی برتری مدل هیبریدی نسبت به سایر مدلها در فرایند اعتبارسنجی بانکهای کشور (مورد مطالعاتی برخی شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران). نشریه اقتصاد و بانکداری اسلامی، 9 (31)، 173-204.
References
Abdou, H, Pointon, J, & El-Masry, A. (2008). Neural nets versus conventional techniques in credit scoring in Egyptian banking. Expert systems with applications, 35 (3) 1275-1292. https://doi.org/10.1016/j.eswa.2007.08.030
Abellán, J, Castellano, J. G. (2017). A comparative study on base classifiers in ensemble methods for credit scoring. Expert Systems with Applications, 73, 1-10. https://doi.org/ 10.1016/j.eswa.2016.12.020
Ala'raj, M, Abbod, M. F. (2016). Classifiers consensus system approach for credit scoring. Knowledge-Based Systems, 104, 89-105. https://doi.org/10.1016/j.knosys.2016.04.013
Anderson, R. (2007). The credit scoring toolkit: theory and practice for retail credit risk management and decision automation. Oxford University Press.
Barani, F, Mirhosseini, M, & Nezamabadi-Pour, H. (2017). Application of binary quantum-inspired gravitational search algorithm in feature subset selection. Applied Intelligence, 47, 304-318. https://doi.org/10.1007/s10489-017-0894-3
Bellotti, T, Crook, J. (2009). Support vector machines for credit scoring and discovery of significant features. Expert systems with applications, 36 (2), 3302-3308. https://doi.org/10.1016/j.eswa.2008.01.005
Cao, A, He, H, Chen, Z, & Zhang, W. (2018). Performance Evaluation of Machine Learning Approaches for Credit Scoring. International Journal of Economics, Finance and Management Sciences, 6 (6), 255.
Chen, M. C, Huang, S. H. (2003). Credit scoring and rejected instances reassigning through evolutionary computation techniques. Expert Systems with Applications, 24 (4), 433-441. https://doi.org/10.1016/S0957-4174(02)00191-4
Chen, W, Ma, C, & Ma, L. (2009). Mining the customer credit using hybrid support vector machine technique. Expert systems with applications, 36 (4), 7611-7616. https://doi.org/10.1016/j.eswa.2008.09.054
Chen,W, Xiang, G, Liu, Y, & Wang, K. (2012). Credit risk Evaluation by hybrid data mining technique. Systems Engineering Procedia, 3, 194-200. https://doi.org/10.1016/j.sepro.2011.10.029
Chi, B. W, Hsu, C. C. (2012). A hybrid approach to integrate genetic algorithm into dual scoring model in enhancing the performance of credit scoring model. Expert Systems with Applications, 39 (3), 2650-2661. https://doi.org/10.1016/j.eswa.2011.08.120
Chuang, C. L, Lin, R. H. (2009). Constructing a reassigning credit scoring model. Expert Systems with Applications, 36 (2), 1685-1694. https://doi.org/10.1016/j.eswa.2007.11.067
Clayton, M. J. (1997). Delphi: a technique to harness expert opinion for critical decision‐making tasks in education. Educational psychology, 17 (4), 373-386. https://doi.org/10.1080/0144341970170401
Dalkey, N, Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management science, 9 (3), 458-467. https://doi.org/10.1287/mnsc.9.3.458
Dowlatshahi, M. B, Derhami, V, & Nezamabadi-pour, H. (2018). A novel three-stage filter-wrapper framework for miRNA subset selection in cancer classification. In Informatics. 5 (1), p. 13. MDPI. https://doi.org/10.3390/informatics5010013
Edla, D. R, Tripathi, D, Cheruku, R, & Kuppili, V. (2018). An efficient multi-layer ensemble framework with BPSOGSA-based feature selection for credit scoring data analysis. Arabian Journal for Science and Engineering, 43 (12), 6909-6928. https://doi.org/10.1007/s13369-017-2905-4
Fernandes, G. B, Artes, R. (2016). Spatial dependence in credit risk and its improvement in credit scoring. European Journal of Operational Research, 249 (2), 517-524. https://doi.org/10.1016/j.ejor.2015.07.013
Goh, R. Y, Lee, L. S. (2019). Credit scoring: a review on support vector machines and metaheuristic approaches. Advances in Operations Research, 2019. https://doi.org/10.1155/2019/1974794
Goh, R. Y, Lee, L. S, Seow, H. V, & Gopal, K. (2020). Hybrid Harmony Search–Artificial Intelligence Models in Credit Scoring. Entropy, 22 (9), 989. https://doi.org/10.3390/e22090989
Harris, T. (2015). Credit scoring using the clustered support vector machine. Expert Systems with Applications, 42 (2) 741-750. https://doi.org/10.1016/j.eswa.2014.08.029
He, H, Zhang, W, & Zhang, S. (2018). A novel ensemble method for credit scoring: Adaption of different imbalance ratios. Expert Systems with Applications, 98, 105-117. https://doi.org/10.1016/j.eswa.2018.01.012
Huang, C. L, Chen, M. C, & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert systems with applications, 33 (4), 847-856. https://doi.org/10.1016/j.eswa.2006.07.007
Huang, C. L, Dun, J. F. (2008). A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Applied soft computing, 8 (4), 1381-1391. https://doi.org/10.1016/j.asoc.2007.10.007
Huang, X, Liu, X, & Ren, Y. (2018). Enterprise credit risk evaluation based on neural network algorithm. Cognitive Systems Research, 52, 317-324. https://doi.org/10.1016/j.cogsys.2018.07.023
Hung, C, Chen, J. H. (2009). A selective ensemble based on expected probabilities for bankruptcy prediction. Expert systems with applications, 36 (3), 5297-5303. https://doi.org/10.1016/j.eswa.2008.06.068
Jadhav, S, He, H, & Jenkins, K. (2018). Information gain directed genetic algorithm wrapper feature selection for credit rating. Applied Soft Computing, 69, 541-553. https://doi.org/10.1016/j.asoc.2018.04.033
Jeong, Y. W, Park, J. B, Jang, S. H, & Lee, K. Y. (2010). A new quantum-inspired binary PSO: application to unit commitment problems for power systems. IEEE Transactions on Power Systems, 25 (3), 1486-1495. https://doi.org/10.1109/TPWRS.2010.2042472
Kashef, S, Nezamabadi‐pour, H, & Nikpour, B. (2018). Multilabel feature selection: A comprehensive review and guiding experiments. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(2), e1240. https://doi.org/10.1002/widm.1240
Koutanaei, F. N, Sajedi, H, & Khanbabaei, M. (2015). A hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring. Journal of Retailing and Consumer Services, 27, 11-23. https://doi.org/10.1016/j.jretconser.2015.07.003
Lee, T. S, Chen, I. F. (2005). A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications, 28 (4) 743-752. https://doi.org/10.1016/j.eswa.2004.12.031
Liang, D, Tsai, C. F, & Wu, H. T. (2015). The effect of feature selection on financial distress prediction. Knowledge-Based Systems, 73, 289-297. https://doi.org/10.1016/j.knosys.2014.10.010
Marqués, A. I, García, V, & Sánchez, J. S. (2012). Exploring the behaviour of base classifiers in credit scoring ensembles. Expert Systems with Applications, 39 (11) 10244-10250. https://doi.org/10.1016/j.eswa.2012.02.092
Mohammadi, F, Fathi, Z. (2016). The Study of the Effect of 5C Factors on the Credit Risk of Natural Customer of Refah e Kargaran Bank and Credit assessment. European Online Journal of Natural and Social Sciences: Proceedings, 4 (1 (s)), pp-1651.
Nanni, L, & Lumini, A. (2009). An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert systems with applications, 36(2), 3028-3033. https://doi.org/10.1016/j.eswa.2008.01.018
Oreski, S, Oreski, G. (2014). Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert systems with applications, 41 (4), 2052-2064. https://doi.org/10.1016/j.eswa.2013.09.004
Ozturk, H, Namli, E, & Erdal, H. I. (2016). Modelling sovereign credit ratings: The accuracy of models in a heterogeneous sample. Economic Modelling, 54, 469-478. https://doi.org/10.1016/j.econmod.2016.01.012
Ping, Y, Yongheng, L. (2011). Neighborhood rough set and SVM based hybrid credit scoring classifier. Expert Systems with Applications, 38 (9), 11300-11304. https://doi.org/10.1016/j.eswa.2011.02.179
Powell, C. (2003). The Delphi technique: myths and realities. Journal of advanced nursing, 41 (4), 376-382. https://doi.org/10.1046/j.1365-2648.2003.02537.x
Sánchez, J. F. M, Lechuga, G. P. (2016). Assessment of a credit scoring system for popular bank savings and credit. Contaduría y Administración, 61 (2), 391-417. https://doi.org/10.1016/j.cya.2015.11.004
Schebesch, K. B, Stecking, R. (2005). Support vector machines for classifying and describing credit applicants: detecting typical and critical regions. Journal of the operational research society, 56 (9), 1082-1088. https://doi.org/10.1057/palgrave.jors.2602023
Şen, D, Dönmez, C. Ç, & Yıldırım, U. M. (2020). A hybrid bi-level metaheuristic for credit scoring. Information Systems Frontiers, 22 (5), 1009-1019. https://doi.org/10.1007/s10796-020-10037-0
Siami, M, Hajimohammadi, Z. (2013). Credit scoring in banks and financial institutions via data mining techniques: A literature review. Journal of AI and Data Mining, 1 (2) 119-129. https://doi.org/10.22044/jadm.2013.124
Singh, S, Murthi, B. P. S, & Steffes, E. (2013). Developing a measure of risk adjusted revenue (RAR) in credit cards market: Implications for customer relationship management. European Journal of Operational Research, 224 (2) 425-434. https://doi.org/10.1016/j.ejor.2012.08.007
Tomczak, J. M, Zięba, M. (2015). Classification restricted Boltzmann machine for comprehensible credit scoring model. Expert Systems with Applications, 42 (4) 1789-1796. https://doi.org/10.1016/j.eswa.2014.10.016
West, D. (2000). Neural network credit scoring models. Computers & Operations Research, 27 (11-12), 1131-1152. https://doi.org/10.1016/S0305-0548(99)00149-5
Xia, Y, Liu, C, Da, B, & Xie, F. (2018). A novel heterogeneous ensemble credit scoring model based on bstacking approach. Expert Systems with Applications, 93, 182-199. https://doi.org/10.1016/j.eswa.2017.10.022
Xiao, H, Xiao, Z, & Wang, Y. (2016). Ensemble classification based on supervised clustering for credit scoring. Applied Soft Computing, 43, 73-86. https://doi.org/10.1016/j.asoc.2016.02.022
Yu, L, Wang, S, & Lai, K. K. (2008). Credit risk assessment with a multistage neural network ensemble learning approach. Expert systems with applications, 34 (2) 1434-1444. https://doi.org/10.1016/j.eswa.2007.01.009
Yu, L, Wang, S, & Lai, K. K. (2009). An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring. European journal of operational research, 195 (3) 942-959. https://doi.org/10.1016/j.ejor.2007.11.025
Yu, L, Yue, W, Wang, S, & Lai, K. K. (2010). Support vector machine based multiagent ensemble learning for credit risk evaluation. Expert Systems with Applications, 37 (2) 1351-1360. https://doi.org/10.1016/j.eswa.2009.06.083
Yu, L, Zhou, R, Tang, L, & Chen, R. (2018). A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data. Applied Soft Computing, 69, 192-202. https://doi.org/10.1016/j.asoc.2018.04.049
Zhang, X, Yang, Y, & Zhou, Z. (2018). A novel credit scoring model based on optimized random forest. In 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 60-65). IEEE. https://doi.org/10.1109/CCWC.2018.8301707
Zhao, Z, Xu, S, Kang, B. H, Kabir, M. M. J, Liu, Y, & Wasinger, R. (2015). Investigation and improvement of multi-layer perceptron neural networks for credit scoring. Expert Systems with Applications, 42 (7), 3508-3516. https://doi.org/10.1016/j.eswa.2014.12.006
References [In Persian]
Azar, A, Faraji, H. (2002). Fuzzy Management science, Ejtema. [In Persian].
Taghavifard, M. T, Nadali, A. (2012). Classification of Credit Applicants of Banking Systems Using Data Mining and Fuzzy Logic. Industrial Management Studies, 9 (25), 85- 107. [In Persian].
Jalili, M, Khodaei, M, & Koneshlou, M. (2010). Validation of real customers in the country's banking system. Quantitative Researches in Management, 1 (3), 127-148. [In Persian].
Raei, R, Fallahpour, S. (2009). Support Vector Machines Application in Financial Distress Prediction of Companies Using Financial Ratios. Accounting and Auditing Review, 15(4), 17- 34. [In Persian].
Rajabzadeh, A, bahrammirzaei, A, & Ahmadi, P. (2010). Hybrid Intelligent Credit Ranking System Using Fuzzy Hybrid-Reasoning Models. Iranian Journal of Trade Studies, 14 (54), 159- 201. [In Persian].
Salehi, M, Korde Katooli, A. (2018). Optimal Feature Selection in order to Bank Customer Credit Risk Determination. BI Management Studies, 6(22), 129-154. [In Persian].
Ghodsipour, S. H, Salari, M, & Delavari, V. (2012). Using Fuzzy Analytic Hierarchy Process and Hybrid of Higher Order Neural Network for Evaluation Credit Risk of Corporate. International Journal of Industrial Engineering & Production Research, 23 (1), 43-54. [In Persian].
Nezamabadi-pour, H. (2013). Inheritance Algorithm: Basic Concepts and Advanced Topics, Publications of Shahid Bahonar University of Kerman. [In Persian].
Hashemi Tilehnouei, M, Hosseinzadeh, S. (2020). Investigating the Efficiency of Hybrid Model in Comparison with Logistic Regression and Artificial Neural Network in Credit Risk Evaluation of Companies Listed in Tehran Stock Exchange. Islamic Economics and Banking, 9 (31), 173-204. [In Persian].
استناد به این مقاله: قنبری، سلیمه.، نظامآبادیپور، حسین.، جلایی، سید عبدالمجید. (1401). بررسی شاخصهای اعتبارسنجی مشتریان بانکی با استفاده از روش هوش مصنوعی و دلفی، مطالعات مدیریت کسب وکار هوشمند، 11(42)، 237-265.
DOI: 10.22054/IMS.2021.49698.1669
Journal of Business Intelligence Management Studies is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.. | ||
آمار تعداد مشاهده مقاله: 105 تعداد دریافت فایل اصل مقاله: 117 |