- Abunadi, I. (2019). Enterprise architecture best practices in large corporations. Information, 10(10), 293.
- Alassery, F. (2022). Predictive maintenance for cyber physical systems using neural network based on deep soft sensor and industrial internet of things. Computers and Electrical Engineering, 101, 108062.
- Badjonski, M., Ivanović, M., & Budimac, Z. (1999). Agent oriented programming language LASS. Object-Oriented Technology and Computing Systems Re-Engineering, 111.
- Balaji, P. G., & Srinivasan, D. (2010). An introduction to multi-agent systems. Innovations in Multi-Agent Systems and Applications-1, 1–27.
- Bär, S. (2022). Integration into a Flexible Manufacturing System. In Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling (pp. 117–133). Springer.
- Barenji, A. V., & Li, Z. (2019). AN AGENT-BASED APPROACH TO DYNAMIC SCHEDULING AND CONTROL FOR A FLEXIBLE SYSTEM. International Journal of Industrial Engineering, 26(3).
- Bartsch, D., & Winkler, H. (2022). Smart order as a new instrument for production control. Hamburg International Conference of Logistics (HICL) 2022, 149–175.
- Bono, F. M., Radicioni, L., Cinquemani, S., Conese, C., & Tarabini, M. (2022). Development of soft sensors based on neural networks for detection of anomaly working condition in automated machinery. NDE 4.0, Predictive Maintenance, and Communication and Energy Systems in a Globally Networked World, 12049, 56–70.
- Brecher, C., & Weck, M. (2022). Production Control Technology. In Machine Tools Production Systems 3 (pp. 605–638). Springer.
- Chen, H., & Huang, B. (2022). Fault-tolerant Soft Sensors for Dynamic Systems.
- De Brabander, B., Van Looy, A., & Viaene, S. (2022). Toward Digital ERP: A Literature Review. International Conference on Research Challenges in Information Science, 685–693.
- De la Prieta, F., Rodríguez-González, S., Chamoso, P., Corchado, J. M., & Bajo, J. (2019). Survey of agent-based cloud computing applications. Future Generation Computer Systems, 100, 223–236.
- Faghihi, P., & Kazerooni, M. (2023). Multi-Agent Enterprise Resource Planning Production Control (MAERPPC) Methodology Based on Personnel Health Monitoring. Scientia Iranica.
- Febrianto, T., & Soediantono, D. (2022). Enterprise Resource Planning (ERP) and Implementation Suggestion to the Defense Industry: A Literature Review. Journal of Industrial Engineering & Management Research, 3(3), 1–16.
- Frazzon, E. M., Kück, M., & Freitag, M. (2018). Data-driven production control for complex and dynamic manufacturing systems. CIRP Annals, 67(1), 515–518.
- Groß, S., Gerke, W., Plapper, P., & Vette-Steinkamp, M. (2021). Agile and Autonomous Production Control for Remanufacturing. 2021 9th International Conference on Control, Mechatronics and Automation (ICCMA), 231–236.
- Huang, Q. (2022). Intelligent manufacturing. In Understanding China’s Manufacturing Industry (pp. 111–127). Springer.
- Humayun, M., Jhanjhi, N. Z., Almotilag, A., & Almufareh, M. F. (2022). Agent-based medical health monitoring system. Sensors, 22(8), 2820.
- Karrer, C. (2012). Engineering production control strategies: A guide to tailor strategies that unite the merits of push and pull. Springer Science & Business Media.
- Kim, Y. G., Lee, S., Son, J., Bae, H., & Do Chung, B. (2020). Multi-agent system and reinforcement learning approach for distributed intelligence in a flexible smart manufacturing system. Journal of Manufacturing Systems, 57, 440–450.
- Klos, S., Patalas-Maliszewska, J., & Tront, D. (2022). A Model for the Intelligent Supervision of Production for Industry 4.0. Journal of Physics: Conference Series, 2198(1), 12005.
- Kumar, K., & van Hillegersberg, J. (2000). Enterprise resource planning: introduction. Communications of the ACM, 43(4), 22–26.
- Lillis, D. J. (2013). Internalising interaction protocols as first-class programming elements in multi agent systems. University College Dublin (Ireland).
- Lin, H.-Y., Hsu, P.-Y., & Ting, P.-H. (2006). ERP systems success: An integration of IS success model and balanced scorecard. Journal of Research and Practice in Information Technology, 38(3), 215–228.
- Mesbahi, N., Kazar, O., Zoubeidi, M., & Benharzallah, S. (2014). An agent-based modeling for an enterprise resource planning (ERP). In Studies in Computational Intelligence (Vol. 551, pp. 225–234). Springer. https://doi.org/10.1007/978-3-319-05503-9_22
- Namiot, D., Sukhomlin, V., & Shargalin, S. (2016). On Software Agents in ERP Systems. International Journal of Open Information Technologies, 4(6), 49–54.
- Oborski, P. (2014). Developments in integration of advanced monitoring systems. The International Journal of Advanced Manufacturing Technology, 75(9), 1613–1632.
- Oluyisola, O. E., Bhalla, S., Sgarbossa, F., & Strandhagen, J. O. (2022). Designing and developing smart production planning and control systems in the industry 4.0 era: a methodology and case study. Journal of Intelligent Manufacturing, 33(1), 311–332.
- Oroojlooy, A., & Hajinezhad, D. (2022). A review of cooperative multi-agent deep reinforcement learning. Applied Intelligence, 1–46.
- Pal, C.-V., Leon, F., Paprzycki, M., & Ganzha, M. (2020). A review of platforms for the development of agent systems. ArXiv Preprint ArXiv:2007.08961.
- Palanca, J., Rincon, J., Julian, V., Carrascosa, C., & Terrasa, A. (2022). Developing IoT Artifacts in a MAS Platform. Electronics, 11(4), 655.
- Papazoglou, M. P. (2001). Agent-oriented technology in support of e-business. Communications of the ACM, 44(4), 71–77.
- Pulikottil, T., Estrada-Jimenez, L. A., Rehman, H. U., Barata, J., Nikghadam-Hojjati, S., & Zarzycki, L. (2021). Multi-agent based manufacturing: current trends and challenges. 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 1–7.
- Redjimi, K., & Redjimi, M. (2022). A Multi-Agent System for Industrial Simulators Design. In Advances in Deep Learning, Artificial Intelligence and Robotics (pp. 129–140). Springer.
- Ricardo Rodríguez, A. R., Benítez, I. F., González Yero, G., & Núñez Alvarez, J. R. (2022). Multi-agent system for steel manufacturing process. International Journal of Electrical and Computer Engineering (IJECE), 12(3), 2441–2453.
- Russell, S., & Norvig, P. (1995). Artificial intelligence: A modern approach prentice-hall. Englewood Cliffs.
- Samigulina, G. A., Nyusupov, A. T., & Shayakhmetova, A. S. (2018). Analytical review of software for multi-agent systems and their applications. News of the National Academyof Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences.-3 (429), 173–181.
- Satybaldiyeva, A., Ismailova, A., Moldasheva, R., Mukhanova, A., & Kadirkulov, K. (2021). ABSTRACT DATA TYPES FOR KNOWLEDGE REPRESENTATION AND SPECIFICATION OF MULTI-AGENT SYSTEMS. Известия НАН РК. Серия Физика и Информационные Технологии., 2, 48–55.
- Scharf, F., Widmann, A., Bonmassar, C., & Wetzel, N. (2022). A tutorial on the use of temporal principal component analysis in developmental ERP research–Opportunities and challenges. Developmental Cognitive Neuroscience, 101072.
- Schuh, G., Gützlaff, A., Fulterer, J., & Hermann, A. (2022). Building Digital Shadows for Production Control. IFIP International Conference on Advances in Production Management Systems, 110–117.
- Senaya, S. K., van der Poll, J. A., & Schoeman, M. (2022). Towards a Framework to Address Enterprise Resource Planning (ERP) Challenges. Proceedings of Sixth International Congress on Information and Communication Technology, 57–71.
- Setiawan, A., Silitonga, R. Y. H., Angela, D., & Sitepu, H. I. (2020). The Sensor Network for Multi-agent System Approach in Smart Factory of Industry 4.0. International Journal of Automotive and Mechanical Engineering, 17(4), 8255–8264.
- Sravan Medicherla, S., & Archana, M. (2022). Study on the erp implementation methodologies on sap, oracle netsuite, and microsoft dynamics 365: A review. ArXiv E-Prints, arXiv-2205.
- Sukhavasi, S. B., Sukhavasi, S. B., Elleithy, K., Abuzneid, S., & Elleithy, A. (2021). Human body-related disease diagnosis systems using cmos image sensors: A systematic review. In Sensors (Vol. 21, Issue 6). https://doi.org/10.3390/s21062098
- Tanajura, A. P. M., Oliveira, V. L. C., & Lepikson, H. (2015). A Multi-agent Approach for Production Management. In Industrial Engineering, Management Science and Applications 2015 (pp. 65–75). Springer.
- Vatankhah Barenji, A., & Vatankhah Barenji, R. (2017). Improving multi-agent manufacturing control system by indirect communication based on ant agents. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 231(6), 447–458.
- Vogel-Heuser, B., Seitz, M., Salazar, L. A. C., Gehlhoff, F., Dogan, A., & Fay, A. (2020). Multi-agent systems to enable Industry 4.0. At-Automatisierungstechnik, 68(6), 445–458.
- Wan, G., Dong, X., Dong, Q., He, Y., & Zeng, P. (2022). Design and implementation of agent-based robotic system for agile manufacturing: A case study of ARIAC 2021. Robotics and Computer-Integrated Manufacturing, 77, 102349.
- Wang, L.-C., & Lin, S.-K. (2009). A multi-agent based agile manufacturing planning and control system. Computers & Industrial Engineering, 57(2), 620–640.
- Zdravković, M., Panetto, H., & Weichhart, G. (2022). AI-enabled enterprise information systems for manufacturing. Enterprise Information Systems, 16(4), 668–720
|