| تعداد نشریات | 61 |
| تعداد شمارهها | 2,224 |
| تعداد مقالات | 18,166 |
| تعداد مشاهده مقاله | 55,944,224 |
| تعداد دریافت فایل اصل مقاله | 29,013,532 |
دسته بندی نظرات مرتبط با فناوری واقعیت مجازی با استفاده از مدل سازی موضوعی | ||
| مطالعات مدیریت کسب و کار هوشمند | ||
| مقاله 1، دوره 13، شماره 47، فروردین 1403، صفحه 1-43 اصل مقاله (2.1 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22054/ims.2023.74147.2342 | ||
| نویسندگان | ||
| فریبا کریمی1؛ آمنه خدیور* 2؛ فاطمه عباسی3 | ||
| 1دانشجوی کارشناسی ارشد، گروه مدیریت فناوری اطلاعات گرایش کسب و کار الکترونیک، دانشکده علوم اجتماعی و اقتصادی، دانشگاه الزهرا(س)، | ||
| 2دانشیار، مدیریت، دانشکده علوم اجتماعی و اقتصاد دانشگاه الزهرا (س)، تهران، ایران. | ||
| 3استادیار، گروه مدیریت صنعتی و فناوری اطلاعات، دانشکده مدیریت و حسابداری، دانشگاه شهید بهشتی، تهران، ایران | ||
| چکیده | ||
| امروزه با رشد روز افزون اینترنت و گسترش سریع فضای مجازی و ویژگی های چشمگیر آن از جمله افزایش سرعت تبادل اطلاعات، ، دسترسی آسان و رایگان به اطلاعات ، متنوع بودن موضوعات و غیره، باعث شده افراد بیشتر زمان خود در فضای مجازی به ویژه فعالیت در شبکه های اجتماعی اختصاص دهند، در این راستا نظرات ثبت شده توسط کاربران در شبکههای مجازی رشد روزافزونی داشته و اهمیت بسیاری پیدا کرده؛ بر این اساس، هدف پژوهش حاضر تحلیل و بررسی نظرات کاربران توییتر دربارهی فناوری واقعیت مجازی با بهره گیری از روش های یادگیری ماشین و رویکرد مبتنی بر واژه نامه میباشد که با جمع آوری حدود 1 میلیون توییت در زمینه فناوری واقعیت مجازی توسط خزشگر وب به پیش پردازش دادهها شامل حذف ایست واژه ها و لینک ها، بن واژه سازی پرداخته شد، سپس مدل سازی موضوعی تخصیص پنهان دیریکله روی داده ها اجرا شد و توسط امتیاز انسجام درجه تشابه معنایی بین کلمات و تمایز بین موضوعات را به دست آمد و تعداد موضوعاتی که بیشترین امتیاز را داشت انتخاب شد و دادهها در 9 موضوع دسته بندی شدند، برای ارزیابی مدل نیز از معیار سرگشتگی استفاده شد که مقدار آن 44/9- به دست آمد که نشان از کارایی مدل دارد. سپس موضاعات مرتبط با فناوری واقعیت مجازی نام گذاری شد . | ||
| کلیدواژهها | ||
| داده کاوی؛ متن کاوی؛ فناوری واقعیت مجازی؛ مدل سازی موضوعی تخصیص پنهان دیریکله | ||
| مراجع | ||
|
نوروزی، م.، خدیور، آ.، عباسی، ف.(1402). مدلسازی و پیشبینی قصد خرید تلفن همراه کاربران توئیتر بر مبنای تحلیل احساسات، 8(1)، 91-112.
عباسی، ف.، سهرابی، ب.، مانیان، ا.، خدیور، آ.(1396). ارائه مدلی جهت دستهبندی احساسات خریداران کتاب با استفاده از رویکرد ترکیبی، 6(21)، 65-92.
عالی خانی، ی.، خدیور، آ.، عباسی، ف. (1401). ارزیابی ادراک عمومی از نسل پنجم ارتباطات سیار از طریق تحلیل احساسات کاربران شبکه اجتماعی توئیتر. پژوهشهای نوین در تصمیمگیری، 7(2)، 111-135.
محمدی و ناظمی. (1400). تجزیهوتحلیل احساسات در سطح ویژگی محصول و مبتنی بر جنسیت کاربران. مطالعات مدیریت کسبوکار هوشمند، 10(37): 267-296. doi:10.22054/IMS.2021.52110.1723
بصیری؛ حبیبی و نعمتی. (1400). تحلیل احساسات توئیتهای مرتبط با کرونا در ایران با استفاده از شبکه عصبی عمیق. مطالعات مدیریت کسبوکار هوشمند، 10(37): 109-134. doi:10.22054/ims.2021.54705.1799
References
Shi, Y., & Herniman, J. (2023). The role of expectation in innovation evolution: Exploring hype cycles. Technovation, 119, 102459. doi:https://doi.org/10.1016/j.technovation.2022.102459
Al-Samarraie, H., Sarsam, S. M., & Alzahrani, A. I. (2023). Haptic technology in society: A sentiment analysis of public engagement. Computers in Human Behavior, 147, 107862.
Kosti, M. V., Georgakopoulou, N., Diplaris, S., Pistola, T., Chatzistavros, K., Xefteris, V.-R.,... Kompatsiaris, I. (2023). Assessing Virtual Reality Spaces for Elders Using Image-Based Sentiment Analysis and Stress Level Detection. Sensors, 23(8), 4130.
Bhattacharyya, M., Roy, A., Midya, S., Mitra, A., Ghosh, A., & Roy, S. (2023). An Emoticon-Based Sentiment Aggregation on Metaverse Related Tweets. Paper presented at the The International Conference on Artificial Intelligence and Computer Vision.
Al-Kfairy, M., Al-Adaileh, A., Tubishat, M., Alfandi, O., BinAmro, M., & Alomari, A. (2023). A Sentiment Analysis Approach for Identifying Users’ Security and Privacy Perception of Metaverse In Twitter. Paper presented at the 2023 International Conference on Smart Applications, Communications and Networking (SmartNets). doi: 10.1109/SmartNets58706.2023.10215677
Kaur, R., Kaur, S., Mufassir Yassen.,S. (2023). Twitter sentiment analysis for depression detection using machine learning algorithms.
Sánchez, P. R. P., Folgado-Fernández, J. A., & Sánchez, M. A. R. (2022). Virtual Reality Technology: Analysis based on text and opinion mining. Mathematical Biosciences and Engineering, 19(8), 7856-7885. doi:https://doi.org/10.3934/mbe.2022367
Kim, Y. B., Lee, S. H., Kang, S. J., Choi, M. J., Lee, J., & Kim, C. H. (2015). Virtual world currency value fluctuation prediction system based on user sentiment analysis. PloS one, 10(8), e0132944
Jin, B., Kim, G., Moore, M., & Rothenberg, L. (2021). Consumer store experience through virtual reality: its effect on emotional states and perceived store attractiveness. Fashion and Textiles, 8, 1-21. doi:https://doi.org/10.1186/s40691-021-00256-7
Abbasi, F., Khadivar, A., & Yazdinejad, M. (2019). A grouping hotel recommender system based on deep learning and sentiment analysis. Journal of Information Technology Management, 11(2).
Rokhsaritalemi, S., Sadeghi-Niaraki, A., & Choi, S.-M. (2020). A review on mixed reality: Current trends, challenges and prospects. Applied Sciences, 10(2), 636. doi:https://doi.org/10.3390/app10020636
Yang, J., Li, Y., Liu, Q., Li, L., Feng, A., Wang, T.,... Lyu, J. (2020). Brief introduction of medical database and data mining technology in big data era. Journal of Evidence-based Medicine, 13(1), 57-69. doi:https://doi.org/10.1111/jebm.12373
Osman, A. S. (2019). Data mining techniques. Retrieved from http://ojs.mediu.edu.my/index.php/IJDSR/article/view/1841
Talib, R., Hanif, M. K., Ayesha, S., & Fatima, F. (2016). Text mining: techniques, applications and issues. International Journal of Advanced Computer Science and Applications, 7(11). Retrieved from https://www.proquest.com/openview/86b5831a74364ad4b36255cc0f697c52/1?pq-origsite=gscholar&cbl=5444811
He, W. (2013). Examining students’ online interaction in a live video streaming environment using data mining and text mining. Computers in Human Behavior, 29(1), 90-102. doi:https://doi.org/10.1016/j. chb.2012.07.020
Mandal, S. (2013). Brief introduction of virtual reality & its challenges. International Journal of Scientific & Engineering Research, 4(4), 304-309.
Craig, A. B., Sherman, W. R., & Will, J. D. (2009). Developing virtual reality applications: Foundations of effective design: Morgan Kaufmann.
Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1253. doi:https://doi.org/10.1002/widm.1253
Bamodu, O., & Ye, X. M. (2013). Virtual reality and virtual reality system components. Paper presented at the Advanced materials research.
Boulter, C. J., & Gilbert, J. K. (2000). Challenges and opportunities of developing models in science education. Developing models in science education, 343-362. doi:https://doi.org/10.1007/978-94-010-0876-1_18
Sagayam, R., Srinivasan, S., & Roshni, S. (2012). A survey of text mining: Retrieval, extraction and indexing techniques. International Journal of Computational Engineering Research, 2(5), 1443-1446. Retrieved from https://fayllar.org/pars_docs/refs/650/649516/649516.pdf
Padhy, N., Mishra, D., & Panigrahi, R. (2012). The survey of data mining applications and feature scope. arXiv preprint arXiv:1211.5723. doi:https://doi.org/10.5121/ijcseit.2012.2303
Liao, S.-H., Chu, P.-H., & Hsiao, P.-Y. (2012). Data mining techniques and applications–A decade review from 2000 to 2011. Expert systems with applications, 39(12), 11303-11311. doi::https://doi.org/10.1016/j.eswa.2012.02.063
Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2017). Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey. arXiv preprint arXiv:1711.04305. doi:https://doi.org/10.48550/arXiv.1711.04305
Islam, T. (2019). Yoga-veganism: Correlation mining of twitter health data. arXiv preprint arXiv:1906.07668. doi:https://doi.org/10.48550/arXiv.1906.07668
Jelodar, H., Wang, Y., Yuan, C., Xia, F., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78(11), 15169-15211. doi:https://doi.org/10.48550/arXiv.1711.04305
Ahmad, M., Aftab, S., Bashir, M. S., & Hameed, N. (2018). Sentiment analysis using SVM: a systematic literature review. International Journal of Advanced Computer Science and Applications, 9(2). doi:https://doi.org/10.14569/IJACSA.2018.090226
Jang, J. Y., Hur, H. J., & Choo, H. J. (2019). How to evoke consumer approach intention toward VR stores? Sequential mediation through telepresence and experiential value. Fashion and Textiles, 6(1), 1-16. doi:https://doi.org/10.1186/s40691-018-0166-9
Loureiro, S. M. C., Guerreiro, J., & Ali, F. (2020). 20 years of research on virtual reality and augmented reality in tourism context: A text-mining approach. Tourism management, 77, 104028. doi:https://doi.org/10.1016/j.tourman.2019.104028
Loureiro, S. M. C., Guerreiro, J., Eloy, S., Langaro, D., & Panchapakesan, P. (2019). Understanding the use of Virtual Reality in Marketing: A text mining-based review. Journal of Business Research, 100, 514-530. doi:https://doi.org/10.1016/j.jbusres.2018.10.055
P.O.Perry. (2009). Cross-Validation for Unsupervised Learning doi: https://doi.org/10.48550/arXiv.0909.3052
References [in Persian]
Noroozi, M., khadivar, a., & Abbasi, F. (2023). Modeling and predicting mobile phone purchase intention of Twitter users based on sentiment analysis. Modern Research in Decision Making, 8(1), 91-112. Retrieved from https://journal.saim.ir/article_706378_376f06e3364192c35dc5e6d70453a5b1.pdf
Abbasi, F., Sohrabi, B., Manian, A., & Khadivar, A. (2017). A Model to Classify Book Buyers’ Sentiments Using Ensemble Approach. Business Intelligence Management Studies, 6(21), 65-92. doi:10.22054/ims.2018.8512
Alikhani, Y., khadivar, a., & abbasi, f. (2022). Assessing the public perception of the fifth generation of mobile communication (5G) by sentiment analysis of Twitter users. Modern Research in Decision Making, 7(2), 111-135. Retrieved from https://journal.saim.ir/ article_253208_99b09f7ff204d88f5915f532bfb16287.pdf
Mohammadi, S., & Nazemi, E. (2021). Sentiment Analysis at the Product Feature Level and Based on Users Gender. Business Intelligence Management Studies, 10(37), 267-296. doi:10.22054/ ims.2021.52110.1723
Basiri, M. E., Habibi, S., & Nemati, S. (2021). Sentiment Analysis of Corona-Related Tweets in Iran Using Deep Neural Network. Business Intelligence Management Studies, 10(37), 109-134. doi:10.22054/ims.2021.54705.1799
| ||
|
آمار تعداد مشاهده مقاله: 1,189 تعداد دریافت فایل اصل مقاله: 645 |
||