[1] J. Alcock, K. Burrage, A note on the balanced method, BIT Numer. Math. 46 (4) (2006)
689-710.
[2] S. Amiri, S. Mohammad Hosseini, A class of weak second order split-drift stochastic RungeKutta schemes for stiff SDE systems, J. Comput. Appl. Math. 275 (2015) 27-43.
[3] S. Amiri, Some drift exponentially fitted stochastic Runge-Kutta methods for solving Itˆo SDE
systems, Bull. Belg. Math. Soc. Simon Stevin 26 (3) (2019), 431-451.
[4] K. Atkinson, A survey of numerical methods for the solution of fredholm integral equations
of the second kind, Philadelphia, PA : Soc. for Industrial and Applied Mathematics, (1976).
[5] H. Brunner, Volterra Integral Equations: An Introduction to Theory and Applications, Cambridge University Press, 30 (2017).
[6] J. R. Cannon, The one dimensional heat equation, Addison-Wesley (1984).
[7] P.A. Cioica, S. Dahlke, Spatial Besov regularity for semilinear stochastic partial differential
equations on bounded Lipschitz domains, Int. J. Comput. Math. 89 (18) (2012) 2443-2459.
[8] J. C. Cox, J. E. Ingersoll, S. A. Ross, A theory of the term structure of interest rates,
Econometrica 53 (1985) 385-407.
[9] M. Ehler, Shrinkage rules for variational minimization problems and applications to analytical ultracentrifugation, J. Inverse Ill-Posed Probl. 19 (4-5)(2011) 593-614.
[10] R. Gorenflo, F. Mainardi, Fractional calculus. Springer, (1997).
[11] W. Hackbusch, Integral equations: theory and numerical treatment, Birkhauser, 120 (2012).
[12] M. Hefter, A. Herzwurm, Strong convergence rates for Cox-Ingersoll-Ross processes-Full
parameter range, Journal of Mathematical Analysis and Applications, 459 (2) (2018) 1079-
1101.
[13] M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, C. Cattani, A computational
method for solving stochastic Itˆo-Volterra integral equations based on stochastic operational
matrix for generalized hat basis functions, J. Comput. Phys. 270 (2014) 402-415.
[14] M. Khodabin, K. Maleknejad and F. Hosseini, Application of triangular functions to numerical solution of stochastic volterra integral equations, IAENG International Journal of
Applied Mathematics, 43 (1) (2013).
[15] M. Khodabin, K. Maleknejad, M. Rostami, M. Nouri, Interpolation solution in generalized
stochastic exponential population growth model, Appl. Math. Model. 36 (2012) 1023-1033.
[16] P. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, SpringerVerlag, Berlin, (1999).
[17] H. Liang, Z. Yang, J. Gao, Strong superconvergence of the EulerMaruyama method for linear
stochastic Volterra integral equations, J. Comput. Appl. Math. 317 (2017) 447-457.
[18] K. Maleknejad, M. Khodabin, M. Rostami, Numerical Solution of Stochastic Volterra Integral Equations By Stochastic Operational Matrix Based on Block Pulse Functions, Mathematical and Computer Modelling, (2012) 791-800.
[19] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, World Scientific, (2010).
[20] R.K. Miller, On a system of integro-differential equations occurring in reactor dynamics,
SIAM J. Appl. Math. 14 (1966) 446-452.
[21] G.N. Milstein, The numerical integration of stochastic differential equations, Springer, Dordrecht, (1995).
[22] F. Mirzaee, E. Hadadiyan, A collocation technique for solving nonlinear Stochastic ItˆoVolterra integral equations, Applied Mathematics and Computation 247 (2014) 1011-1020.
[23] F. Mohammadi, A wavelet-based computational method for solving stochastic Itˆo-Volterra
integral equations, Journal of Computational Physics, 298 (2015) 254-265.
[24] B. Kh. Mousavi, A. A. Hemmat, M. H. Heydari, Wilson wavelets for solving nonlinear
stochastic integral equations, Wavelets and Linear Algebra 4(2) (2017) 33-48.
[25] B. Oksendal, Stochastic Differential Equations, An Introduction with Applications, Fifth
Edition, Springer-Verlag, New York, (1998).
[26] D. ORegan, M. Meehan, Existence theory for nonlinear integral and integrodifferential equations, Springer Science & Business Media, (2012) 445.
[27] A. R¨oßler, Rooted tree analysis for order conditions of stochastic Runge-Kutta methods for
the weak approximation of stochastic differential equations, Stochastic Anal. Appl. 24 (1)
(2006) 97-134.
[28] M. Saffarzadeh, G.B. Loghmani, M. Heydari, An iterative technique for the numerical solution of nonlinear stochastic Itˆo-Volterra integral equations, Journal of Computational and
Applied Mathematics 333 (2018) 74-86.
[29] F.H. Shekarabi, M. Khodabin, K. Maleknejad, The Petrov-Galerkin method for numerical
solution of stochastic Volterra integral equations, IAENG Int. J. Appl. Math. 44 (2014) 170-
176.
[30] Z. Sadati, Kh. Maleknejad, Application of triangular functions for solving Vasicek model,
Journal of Linear and Topological Algebra, 4 (3) (2015) 173-182.
[31] S. Saha Ray, P. Singh, Numerical solution of stochastic Itˆo-Volterra integral equation by
using Shifted Jacobi operational matrix method, Appl. Math. Comput. 410 (2021) 126440.
[32] F. G. Tricomi, Integral equations, Courier Corporation, (1957).