| تعداد نشریات | 61 |
| تعداد شمارهها | 2,227 |
| تعداد مقالات | 18,260 |
| تعداد مشاهده مقاله | 56,023,502 |
| تعداد دریافت فایل اصل مقاله | 29,041,430 |
تحلیل نقش اقتصاد نهادی در تنظیم سیاستهای زیستمحیطی: تأثیر اینترنت، روند دموکراتیک و ارائه خدمات دولت بر انتشار CO2 کاربرد مدل پانل کوانتایل (مطالعه موردی: نمونه جهانی) | ||
| پژوهشهای اقتصادی ایران | ||
| مقاله 7، دوره 29، شماره 101، دی 1403، صفحه 237-280 اصل مقاله (2.32 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22054/ijer.2025.80119.1286 | ||
| نویسندگان | ||
| نرگس صالح نیا1؛ نجمه سوری ناصری2؛ وحید رضائی* 2 | ||
| 1دانشیارگروه اقتصاد، دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
| 2دانشجوی دکتری علوم اقتصادی، دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
| چکیده | ||
| آلودگی زیستمحیطی از بزرگترین چالشهای عصر حاضر است که سلامت انسان و سیاره زمین را به خطر انداخته است. در این میان، اینترنت و شاخصهای اقتصاد نهادی مانند ارائه خدمات دولت و روند دموکراتیک بهعنوان سه عنصر کلیدی در توسعه اقتصادی دنیای مدرن، نقشی حیاتی در مقابله با آلودگی و حفظ محیط زیست ایفا میکنند. هر کدام از این عوامل بهطور مستقیم و غیرمستقیم بر میزان انتشار آلایندهها و تخریب محیط زیست تأثیر میگذارند. ظهور اینترنت انقلابی در ارتباطات، انتشار اطلاعات و ساختارهای حکومتی در سراسر جهان ایجاد کرده است. همزمان، روند دموکراتیک با تأکید فزاینده بر شفافیت، مشارکت شهروندان و پاسخگویی در حال تکامل است. علاوه بر این، ارائه خدمات دولتی، تسهیل شده توسط فناوریهای دیجیتال، با هدف بهرهوری و دسترسی بهتر و آسانتر به خدمات دولتی، تحول قابل توجهی داشته است. بااینحال، در میان این پیشرفتها، پیامدهای زیستمحیطی، بهویژه از نظر انتشار CO2، توجه را به خود جلب کرده است. ازاینرو در این پژوهش، با بهرهگیری از رویکرد اقتصاد نهادی، تأثیر اینترنت، روند دموکراتیک و ارائه خدمات دولتی بر انتشار CO2 در 63 کشور در دوره زمانی 2000 تا 2020 از طریق روش پانل کوانتایل مورد بررسی قرار میگیرد. نتایج نشان میدهد که افزایش ضریب نفوذ اینترنت در جهان در همه سطوح کوانتایل به جزء سطح 95/0 تأثیر مثبت و معناداری بر انتشار CO2 دارد. شاخص ارائه خدمات دولت فقط در سطوح کوانتایل 0/25 و 0/5 رابطه منفی با انتشار آلایندگی CO2 دارد. روند دموکراتیک در تمام سطوح رابطه بیمعنی با انتشار آلودگی ناشی از CO2 دارد. | ||
| کلیدواژهها | ||
| اینترنت؛ روند دموکراسی؛ خدمات دولت؛ CO2؛ پنل کوانتایل | ||
| مراجع | ||
|
مظهری آوا، مریم، فتاحی، شهرام و سهیلی، کیومرث. (۱۳۹۸). بررسی عوامل مؤثر بر فشار بازار ارز در کشورهای درحالتوسعه و توسعهیافته: رویکرد پنل کوانتایل. پژوهشها و سیاستهای اقتصادی، 27(92)، 227-256. SID. https://sid.ir/paper/364141/fa
جباری، لیلا و سالم، علیاصغر . (1402). بررسی اثر غیرخطی تغییر ساختار اشتغال بر انتشار دیاکسید کربن در استانهای ایران با استفاده از مدل پنل کوانتایل. پژوهشهای اقتصادی ایران، 28(96)، 162-123. doi: 10.22054/ijer.2022.64527.1051
Abid, M. (2016). Impact of economic, financial, and institutional factors on CO2 emissions: evidence from sub-Saharan Africa economies. Utilities Policy, 41, 85-94. https://doi.org/1016/10/j.jup.06/2016.009 Acheampong, A.O., Opoku, E.E.O. & Dzator, J. (2022). Does democracy really improve environmental quality? Empirical contribution to the environmental politics debate. Energy Economics, 109, 105942. https://doi.org/1016/10/j.eneco.105942/2022 Adams, S. & Acheampong, A.O. (2019). Reducing carbon emissions: the role of renewable energy and democracy. Journal of Cleaner Production, 240, 118245. https://doi.org/1016/10/j.jclepro.118245/2019 Adebayo, T.S. & Acheampong, A.O. (2022). Modelling the globalization-CO2 emission nexus in Australia: evidence from quantile-on-quantile approach. Environmental Science and Pollution Research, 29(7), 9867-9882. https://link.springer.com/article/10.1007/s11356-021-16368-y Adebayo, T.S., Saint Akadiri, S., Uhunamure, S.E., Altuntaş, M. & Shale, K. (2022). Does political stability contribute to environmental sustainability? Evidence from the most politically stable economies. Heliyon, 8(12). https://doi.org/1016/10/j.heliyon.2022.e12479 Ahmed, K. (2020). Environmental policy stringency, related technological change and emissions inventory in 20 OECD countries. Journal of Environmental Management, 274, 111209. https://doi.org/1016/10/j.jenvman.111209/2020 Aldieri, L. & Vinci, C.P. (2017). Quantile regression for panel data: an empirical approach for knowledge spillovers endogeneity. International Journal of Economics and Finance, 9(7). doi: 5539/10/ijef.v9n7p106 Amri, F. (2018). Carbon dioxide emissions, total factor productivity, ICT, trade, financial development, and energy consumption: testing environmental Kuznets curve hypothesis for Tunisia. Environmental Science and Pollution Research, 25, 33691-33701. https://doi.org/1007/10/s11356-018-3331-1 An Hign, D., Gholami, R. & Shirazi, F. (2017). ICT and environmental sustainability. Telematics and Informatics, 34(4), 85-95. https://dl.acm.org/doi/abs/1016/10/j.tele.01/2017.001 Aslam, B., Hu, J., Shahab, S., Ahmad, A., Saleem, M., Shah, S.S.A. & et al. (2021). The nexus of industrialization, GDP per capita and CO2 emission in China. Environmental Technology & Innovation, 23, 101674. https://doi.org/1016/10/J.ETI.101674/2021 Asongu, S.A. & Odhiambo, N.M. (2020). Governance, CO2 emissions and inclusive human development in sub-Saharan Africa. Energy Exploration & Exploitation, 38(1), 18-36. https://doi.org/1177/10/0144598719835594 Avom, D., Nkengfack, H., Fotio, H.K. & Totouom, A. (2020). ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels. Technological Forecasting and Social Change, 155, 120028. https://doi.org/1016/10/j.techfore.120028/2020 Awan, A., Abbasi, K.R., Rej, S., Bandyopadhyay, A. & Lv, K. (2022). The impact of renewable energy, internet use and foreign direct investment on carbon dioxide emissions: A method of moments quantile analysis. Renewable Energy, 189, 454-466. https://doi.org/1016/10/j.renene.03/2022.017 Awan, A., Kocoglu, M., Banday, T.P. & Tarazkar, M.H. (2022). Revisiting global energy efficiency and CO2 emission nexus: fresh evidence from the panel quantile regression model. Environmental Science and Pollution Research, 29(31), 47502-47515. https://link.springer.com/article/10.1007/s11356-022-19101-5 Ayhan, F., Kartal, M.T., Kılıç Depren, S. & Depren, Ö. (2023). Asymmetric effect of economic policy uncertainty, political stability, energy consumption, and economic growth on CO2 emissions: evidence from G-7 countries. Environmental Science and Pollution Research, 30(16), 47422-47437. https://link.springer.com/article/1007/10/s11356-023-25665-7 Barbieri, L. (2009). Panel unit root tests under cross-sectional dependence: An overview. Journal of Statistics: Advances in Theory and Applications, 1(2), 117158.https://www.researchgate.net/publication/267090484_Panel_Unit_Root_Tests_under_Cross-sectional_Dependence_An_Overview Binder, M. & Coad, A. (2011). From Average Joe's happiness to Miserable Jane and Cheerful John: Using quantile regressions to analyze the full subjective well-being distribution. Journal of Economic Behavior & Organization, 79(3), 275-290. https://doi.org/1016/10/j.jebo.02/2011.005 Boateng, E., Annor, C.B., Amponsah, M. & Ayibor, R.E. (2024). Does FDI mitigate CO2 emissions intensity? Not when institutional quality is weak. Journal of Environmental Management, 354, 120386. https://doi.org/1016/10/j.jenvman.120386/2024 Brenna, K.A. (2015). Democracy and Climate Change The relationship between democracy and CO2-emissions (Master's thesis). http://urn.nb.no/URN:NBN:no-53168 Cao, J., Zhang, J., Chen, Y., Fan, R., Xu, L., Wu, E. & Wu, S. (2023). Current status, future prediction and offset potential of fossil fuel CO2 emissions in China. Journal of Cleaner Production, 139207. https://doi.org/1016/10/j.jclepro.139207/2023 Cheng, C., Ren, X., Dong, K., Dong, X. & Wang, Z. (2021). How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression. Journal of Environmental Management, 280, 111818. https://doi.org/10.1016/j.jenvman.2020.111818 Chen, F., Liu, A., Lu, X., Zhe, R., Tong, J. & Akram, R. (2022). Evaluation of the effects of urbanization on carbon emissions: The transformative role of government effectiveness. Frontiers in Energy Research, 10, 848800. https://doi.org/3389/10/fenrg.848800/2022 Cohen, S., Demeritt, D., Robinson, J. & Rothman, D. (1998). Climate change and sustainable development: towards dialogue. Global Environmental Change, 8(4), 341-371. https://doi.org/1016/10/S0959-3780(98)00017-X Danish, Baloch, M.A., Mahmood, N. & Zhang, J.W. )2019(. Effect of natural resources, renewable energy and economic development on CO2 emissions in BRICS countries. Sci. Total Environ. 678, 632–638. https://doi.org/1016/10/J. SCITOTENV.05/2019.028 Danish, Zhang, J., Wang, B. & Latif, Z. (2019). Towards cross‐regional sustainable development: The nexus between information and communication technology, energy consumption, and CO2 emissions. Sustainable Development, 27(5), 990-1000. https://doi.org/1002/10/sd.2000 Fischer, C. & Newell, R.G. (2008). Environmental and technology policies for climate mitigation. Journal of Environmental Economics and Management, 55(2), 142-162. https://doi.org/10.1016/j.jeem.2007.11.001 Ghosh, S., Hossain, M.S., Voumik, L.C., Raihan, A., Ridzuan, A.R. & Esquivias, M.A. (2023). Unveiling the spillover effects of democracy and renewable energy consumption on the environmental quality of BRICS countries: A new insight from different quantile regression approaches. Renewable Energy Focus, 46, 222-235. https://doi.org/1016/10/j.ref.06/2023.004 Jabbari, L. & Salem, A.A. (2023). Investigating the nonlinear effect of employment structure change on carbon dioxide emissions in Iran's provinces using the quantile panel model. Iranian Economic Research, 28(96), 123-162. https://doi.org/10.22054/ijer.2022.64527.1051 [in Persian] Jayachandran, S. (2015). The Roots of Gender Inequality in Developing Countries. Annu. Rev. Econ. 7, 63–88. doi:1146/10/annurev-economics-080614-115404 Jokinen, P., Malaska, P. & Kaivo-Oja, J. (1998). The environment in aninformation society': A transition stage towards more sustainable development?. Futures, 30(6), 485-498. https://doi.org/1016/10/S0016-3287(98)00054-8 Haq, Z.U., Mehmood, U., Tariq, S. & Mariam, A. (2024). The impacts of globalization and GDP on Co2 emissions: do technological innovation and renewable energy lower some burden in saarc countries. Journal of the Knowledge Economy, 15(3), 1–24. https://link.springer.com/article/10.1007/s13132-023-01704-z Helliwell, J.F. & Huang, H. (2008). How's your government? International evidence linking good government and well-being. British Journal of Political Science, 38(4), 595-619. https://doi.org/10.1017/S0007123408000306 Hilty, L.M. (2008). Information technology and sustainability: essays on the relationship between ICT and sustainable development. BoD–Books on Demand. Fettweis, G. & Zimmermann, E. (2008). ICT energy consumption—Trends and challenges. In Proceedings of the 11th International Symposium on Wireless Personal Multimedia Communications (pp. 1-6). Lapland, Finland.https://www.vodafone-chair.org/pbls/legacy/gerhard-fettweis/ICT_Energy_Consumption_-_Trends_and_Challenges.pdf Kao, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics, 90(1), 1-44. https://doi.org/1016/10/S0304-4076(98)00023-2 Kartal, M.T., Kılıç Depren, S. & Kirikkaleli, D. (2023). Asymmetric effect of political stability on production-based CO2 emissions in the UK: long-run evidence from nonlinear ARDL and frequency domain causality. Environmental Science and Pollution Research, 30(12), 33886-33897. https://doi.org/1007/10/s11356-022-24550-z Khuntia, J., Saldanha, T.J., Mithas, S. & Sambamurthy, V. (2018). Information technology and sustainability: Evidence from an emerging economy. Production and Operations Management, 27(4), 756-773. https://journals.sagepub.com/doi/abs/1111/10/poms.12822 Kinda, S. (2011). Democratic institutions and environmental quality: effects and transmission channels. Available at SSRN 2714300. http://dx.doi.org/2139/10/ssrn.2714300 Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analysis, 91(1), 74-89. https://doi.org/1016/10/j.jmva.05/2004.006 Koenker, R., & Bassett Jr., G. (1978). Regression quantiles. econometrica. Journal of the Econometric Society, 46, 33-50. https://doi.org/2307/10/1913643 Kuang, H., Akmal, Z. & Li, F. (2022). Measuring the effects of green technology innovations and renewable energy investment for reducing carbon emissions in China. Renewable Energy, 197, 1-10. https://doi.org/1016/10/j.renene.06/2022.091 Lafferty, W.M. & Meadowcroft, J. (1996). Democracy and the Environment: Congruences and Conflict-Preliminary Reflections (Book). econpapers.repec.org Lee, C.C. & Zhao, Y.N. (2023). Heterogeneity analysis of factors influencing CO2 emissions: the role of human capital, urbanization, and FDI. Renewable and Sustainable Energy Reviews, 185, 113644. https://doi.org/1016/10/j.rser.113644/2023 Lei, X., Ma, Y., Ke, J. & Zhang, C. (2023). The non-linear impact of the digital economy on carbon emissions based on a mediated effects model. Sustainability, 15(9), 438. https://doi.org/3390/10/su15097438. Li, L., Zheng, Y., Zheng, S. & Ke, H. (2020). The new smart city programme: Evaluating the effect of the internet of energy on air quality in China. Science of The Total Environment, 714, 136380. https://doi.org/1016/10/j.scitotenv.136380/2019 Li, X., Zhang, C. & Zhu, H. (2023). Effect of information and communication technology on CO2 emissions: an analysis based on country heterogeneity perspective. Technological Forecasting and Social Change, 192, 122599. https://doi.org/1016/10/j.techfore.122599/2023 Lin, B. & Xu, B. (2018). Factors affecting CO2 emissions in China's agriculture sector: A quantile regression. Renewable and Sustainable Energy Reviews, 94, 15-27. https://doi.org/1016/10/j.rser.05/2018.065 Maddala, G.S. & Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and statistics, 61(S1), 631-652. https://doi.org/1111/10/1468-0610/0084s1631 Mazaheri Ava, M., Fattahi, Sh. & Soheili, K. (2019). Investigating the factors affecting exchange market pressure in developing and developed countries: A quantile panel approach. Economic Research and Policies, 27(92), 227-256. SID. https://sid.ir/paper/364141/fa [in Persian] Mastykash, O., Peleshchyshyn, A., Fedushko, S., Trach, O. & Syerov, Y. (2018, September). Internet social environmental platforms data representation. In 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT) (Vol. 1, pp. 199-202). IEEE. doi: 1109/10/STC-CSIT.8526586/2018 Mawejje, J. (2023). Renewable and nonrenewable energy consumption, economic growth, and CO2 emissions in Eastern and South African countries: the role of informality. Environmental Science and Pollution Research, 30(28), 72575-72587. 1007/10/s11356-023-27549-2 May, G., Stahl, B., Taisch, M. & Kiritsis, D. (2017). Energy management in manufacturing: From literature review to a conceptual framework. Journal of cleaner production, 167, 1464-1489. https://doi.org/1016/10/j.jclepro.10/2016.191 Ménard, C. (2011). A new institutional economics perspective on environmental issues. Environmental Innovation and Societal Transitions, 1(1), 115-120. https://doi.org/10.1016/j.eist.2011.04.002 Midlarsky, M.I. (1998). Democracy and the environment: an empirical assessment. Journal of Peace Research, 35(3), 341-361. https://doi.org/1177/10/0022343398035003005 Neves, S.A., Marques, A.C. & Patrício, M. (2020). Determinants of CO2 emissions in European Union countries: does environmental regulation reduce environmental pollution? Economic Analysis and Policy, 68, 114-125. https://doi.org/1016/10/j.eap.09/2020.005 OECD (2022). Building Trust and Reinforcing Democracy: Preparing the Ground for Government Action, OECD PublicGovernance Reviews, OECD Publishing, Paris, https://doi.org/1787/10/76972a4a-en Payne, R.A. (1995). Freedom and the environment. J. Democracy, 6, 41. https://heinonline.org/HOL/LandingPage?handle=hein.journals/jnlodmcy6&div=55&id=&page= Pesaran, M.H. (2007). A simple panel unit root test in the presence of cross‐section dependence. Journal of Applied Econometrics, 22(2), 265-312. doi: 2139/10/ssrn.457280 Powell, D. (2022). Quantile regression with nonadditive fixed effects. Empirical Economics, 63(5), 2675-2691. https://link.springer.com/article/10.1007/s00181-022-02216-6 Pushak, T., Tiongson, E.R. & Varoudakis, A. (2007). Public finance, governance, and growth in transition economies: Empirical evidence from 1992-2004. World Bank Policy Research, Working Paper, (4255). https://ssrn.com/abstract=995076 Ren, Y., Liu, L., Zhu, H. & Tang, R. (2020). The direct and indirect effects of democracy on carbon dioxide emissions in BRICS countries: evidence from panel quantile regression. Environmental Science and Pollution Research, 27(26), 33085-33102. https://doi.org/1007/10/s11356-020-09167-4 Sadaoui, N., Zabat, L., Sekrafi, H. & Abid, M. (2024). The moderating role of natural resources between governance and CO2 emissions: Evidence from MENA countries. Energy & Environment, 35(3), 1597-1615.https://doi.org/1177/10/0958305X221141389 Salahuddin, M., Alam, K. & Ozturk, I. (2016). The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation. Renewable and Sustainable Energy Reviews, 62, 1226-1235. https://doi.org/1016/10/j.rser.04/2016.018 Salman, M., Long, X., Dauda, L. & Mensah, C.N. (2019). The impact of institutional quality on economic growth and carbon emissions: Evidence from Indonesia, South Korea and Thailand. Journal of Cleaner Production, 241, 118331. https://doi.org/1016/10/j.jclepro.118331/2019 Sarfraz, M., Ivascu, L. & Cioca, L.I. (2021). Environmental regulations and CO2 mitigation for sustainability: panel data analysis (PMG, CCEMG) for BRICS nations. Sustainability, 14(1), 72. https://doi.org/3390/10/su14010072 Shabani, Z.D., Shahnazi, R. & Sadati, S.M. (2024). The effects of spatial spillover of good governance and renewable energy on CO2 emissions. Environment, Development and Sustainability, 2024, 1-38.. 1007/10/s10668-023-04335-1 Sun, W. & Huang, C. (2020). How Does Urbanization Affect Carbon Emission Efficiency? Evidence from China. J. Clean. Prod. 272, 122828. doi:1016/10/j.jclepro.122828/2020 Tavares, A.R. & Robaina, M. (2023). Drivers of the green paradox in Europe: an empirical application. Environmental Science and Pollution Research, 30(15), 42791-42812. https://link.springer.com/article/1007/10/s11356-021-16856-1 Vatn, A. (2009). Governing the environment: the institutional economics approach. Economia delle fonti di energia e dell'ambiente. Fascicolo 1, 2009, 1000-1026. http://doi.org/10.3280/EFE2009-001005 Wang, K.M. (2013). The relationship between carbon dioxide emissions and economic growth: quantile panel-type analysis. Quality & Quantity, 47, 1337-1366. doi 10.1007/s11135-011-9594-y Wei, L. & Ullah, S. (2022). International tourism, digital infrastructure, and CO2 emissions: fresh evidence from panel quantile regression approach. Environmental Science and Pollution Research, 29(24), 36273-36280. https://link.springer.com/article/10.1007/s11356-021-18138-2 Wu, H., Xue, Y., Hao, Y. & Ren, S. (2021). How does internet development affect energy-saving and emission reduction? Evidence from China. Energy Economics, 103, 105577. https://doi.org/1016/10/j.eneco.105577/2021 Wu, L. & Zhang, Z. (2020). Impact and threshold effect of Internet technology upgrade on forestry green total factor productivity: Evidence from China. Journal of Cleaner Production, 271, 122657. https://doi.org/1016/10/j.jclepro.122657/2020 Yan, J., Yang, X., Nie, C., Su, X., Zhao, J. & Ran, Q. (2022). Does government intervention affect CO2 emission reduction effect of producer service agglomeration? Empirical analysis based on spatial Durbin model and dynamic threshold model. Environmental Science and Pollution Research, 29(40), 61247-61264. https://doi.org/1007/10/s11356-022-20143-y Yasmeen, R., Tao, R., Shah, W.U.H., Padda, I.U.H. & Tang, C. (2022). The nexuses between carbon emissions, agriculture production efficiency, research and development, and government effectiveness: Evidence from major agriculture-producing countries. Environmental Science and Pollution Research, 29(34), 52133-52146. https://doi.org/1007/10/s11356-022-19431-4 Yirong, Q. (2022(. Does environmental policy stringency reduce CO2 emissions? Evidence from High-Polluted Economies. J. Clean. Prod. 341, 130648. https://doi. org/1016/10/j.jclepro.130648/2022 Zhang, F., Deng, X., Phillips, F., Fang, C. & Wang, C. (2020). Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China. Technological Forecasting and Social Change, 154, 119949. https://doi.org/1016/10/j.techfore.119949/2020 Zhang, S., Xie, W., Sun, S., Wu, F. & Xue, Y. (2024). Nexus of green energy innovation, governance quality, and CO2 emissions in natural resource sector: The role of sustainable human development. Resources Policy, 88, 104493. https://doi.org/1016/10/j.resourpol.104493/2023 Zhang, W., Li, G., Uddin, M.K. & Guo, S. (2020). Environmental regulation, foreign investment behavior, and carbon emissions for 30 provinces in China. Journal of Cleaner Production, 248, 119208. http://dx.doi.org/1016/10/j.jclepro.119208/2019. Zhu, H., Duan, L., Guo, Y. & Yu, K. (2016). The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: evidence from panel quantile regression. Economic Modelling, 58, 237-248. https://doi.org/1016/10/j.econmod.05/2016.003 | ||
|
آمار تعداد مشاهده مقاله: 454 تعداد دریافت فایل اصل مقاله: 282 |
||