تفرشی, ش., & دروگر کلخوران, س. (1388). بررسی میزان آشنایی و بهره گیری دانشجویان دانشگاه آزاد اسلامی واحد کرج از کتابخانه های. فصلنامه دانش شناسی, 33-44.
الهی, ش., قدس الهی, ا., & ناجی, ح. (1393). ارائه مدل ترکیبی شبکه های عصبی با بهره گیری از یادگیری جمعی به منظور ارزیابی ریسک اعتباری. انجمن فناوری اطلاعات و ارتباطات ایران, 11-28.
برهانی زرندی, س., نیک نفس, ع., & محمدی, م. (1392). عقیده کاوی در نقد کاال با استفاده از شبکه واژگان احساسی. دومین کنفرانس ملی مهندسی صنایع و سیستمها. نجف آباد: دانشگاه آزاد واحد نجف آباد.
پیکری, ن., یعقوبی, س., & طاهری, ح. (1394). تحلیل احساسات در شبکه اجتماعی توییتر با تکنیک متن کاوی. کنفرانس بین المللی وب پژوهی. تهران: دانشگاه علم و فرهنگ.
توکلی گارماسه, & رافع, و. (1395). ارائه روشی برای آنالیز احساسات در متن نظرات. نخستین کنفرانس ملی تحقیقات بین رشته ای در مهندسی کامپیوتر، برق، مکانیک و مکاترونیک. قزوین: مرکز آموزش عالی فنی مهندسی بوئین زهرا, پارک علم و فناوری استان قزوین. بازیابی از https://www.civilica.com/Paper-IRCEM01-IRCEM01_144.html
نبوتی, ا., عزیزی, ا., عباسی, ا., وکیلی ارکی, ح., زارعی, ج., & رضوی, ا. (1392). کاربرد داده کاوی در پیش بینی مرگ بیماران سوختگی: مقایسه عملکرد چند الگوریتم. مدیریت اطلاعات سلامت, 789- 779.
Liu, B. (2015). Sentiment analysis: Mining opinions, sentiments,and emotions. Cambridge University Press.
Suen, C., & Lam, L. (2000). Multiple Classifier Combination Methodologies. MCS 2000, LNCS 1857, 52-66.
Aldogan, D., & Yaslan, Y. (2017). A comparison study on active learning integrated ensemble approaches in sentiment analysis. Computers and Electrical Engineering, 311-323.
Bhatt, A., Patel, A., Chheda, H., & Gawande, K. (2015). Amazon Review Classification and Sentiment Analysis. nternational Journal of Computer Science and Information Technologies, 5107-5110.
Boudad, N., Faizi, R., Haj Thami, R., & Chiheb, R. (2017). Sentiment analysis in Arabic: A review of the literature. Ain Shams Engineering Journal.
Cambria, E., & Hussain, A. (2015). Sentic Computing A Common-Sense-Based Framework for Concept-Level Sentiment Analysis. Switzerland: AG Switzerland.
Chen, Y., Ferrer, X., Wiratunga, N., & Plaza, E. (2014). Sentiment and Preference Guided Social. L. Lamontagne and E. Plaza (Eds.): ICCBR 2014, LNCS 8765, 79-94.
Cheng, H., Yan, X., Han, J., & Hsu, C.-W. (2007). Discriminative Frequent Pattern Analysis for Effective Classification. 2007 IEEE 23rd International Conference on Data Engineering. Istanbul: IEEE.
Chiavetta, F., Lo Bosco, G., & Pilato, G. (2016). A Lexicon-based Approach for Sentiment Classification of Amazon Books Reviews in Italian Language. In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016), (ص. 159-170).
Chibelushi, C., & Thelwall , M. (2009). Text Mining for Meeting Transcript Analysis to Extract Key Decision Elements. International MultiConference of Engineers and Computer Scientists, 710-715.
Coletta, L., da Silva, N., Hruschka, E., & Hruschka Jr, E. (2014). Combining classification and clustering for tweet sentiment analysis. Biblioteca Digital da Produção Intelectual - BDPI, 210-215.
Das, S., & Chen, M. (2001). Yahoo! for Amazon: Extracting market sentiment from stock message boards. in Proceedings of APFA-2001.
Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Fang and Zhan Journal of Big Data, 2-5.
Fang, X., & Zhan, u. (2015). Sentiment analysis using product review data. Journal of Big Data, 2(5), 1-14. doi:DOI 10.1186/s40537-015-0015-2
Filho, P., & Pardo, T. (2013). NILC USP: A Hybrid System for Sentiment Analysis in Twitter Messages. Second Joint Conference on Lexical and Computational Semantics (*SEM) (ص. 568–572). Association for Computational Linguistics.
Hamdan, H., Bellot, P., & Bechet, F. (2016). Sentiment Analysis in Scholarly Book Reviews.
Ho, T., Hull, J., & Srihari, S. (1994). Decision combination in multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 66-75.
Isah, H., Trundle, P., & Neagu, D. (2014). Social Media Analysis for Product Safety using Text Mining and Sentiment Analysis. Institute of Electrical and Electronics Engineering.
Katariya, N. P., & Chaudhari, M. S. (2015). TEXT PREPROCESSING FOR TEXTMINING USING SIDE INFORMATION. International Journal of Computer Science and Mobile Applications, 1-5.
Kittler, J. (1998). Combining classifiers: a theoretical framework. Pattern Analysis and Applications, 18-27.
Kohavi, R. (1995). A Study of CrossValidation for Accuracy Estimation and Model Selection. Appears in the International Joint Conference on Articial Intelligence (IJCAI).
Krouska, A., Troussas, C., & Virvou, M. (2016). The effect of preprocessing techniques on Twitter. Chalkidiki. Greece: IEEE.
Liu, B. (2010). Sentiment Analysis and Subjectivity. در Invited Chapter for the Handbook of Natural Language Processing (ص. 1-38). Boca: Taylor and Francis Group. بازیابی از http://gnode1.mib.man.ac.uk/tutorials/NLPhandbook-NLPhandbook-
Liu, B. (2012). Sentiment Analysis and Opinion Mining (Synthesis Lectures on Human Language Technologies). Williston: Morgan & Claypool Publishers.
Nayak, A. S., Kanive, A. P., Chandavekar, N., & R, B. (2016, June). Survey on Pre-Processing Techniques for Text Mining. International Journal Of Engineering And Computer Science, 5(6), 16875-16879.
Nguyen, T., Shirai, K., & Velcin, J. (2015). Sentiment analysis on social media for stock movement prediction. Expert Systems With Applications 4, 9603–9611.
Oza, N. (2006). Ensemble Data Mining Methods. In Encyclopedia of Data Warehousing and Mining, 448–453.
P. BRADFORD, J., & E. BRODLEY, C. (2001). The Effect of Instance-Space Partition on Significance. Machine Learning, 269-286.
Pandey, A., Rajpoor, D., & Saraswat, M. (2017). Twitter sentiment analysis using hybrid cuckoo search method. Information Processing and Management, 764–779.
Polikar , R. (2006). Ensemble based systems in decision making. IEEE Circuits Syst Mag, 21–45.
Ramasubramanian, C., & Ramya, R. (2013). Effective Pre-Processing Activities in Text Mining using Improved Porter’s Stemming Algorithm. International Journal of Advanced Research in Computer and Communication Engineering, 4536-4538.
Rylander, R. G., Propst, D. B., & Mcmurtry, T. R. (1995). Nonresponse and Recall Biases in a Survey of Traveler Spending. Journal of Travel Research, 39-45. doi:https://doi.org/10.1177/004728759503300406
Stavrianou, A., Andritsos, P., & Nicoloyannis, N. (2007). Overview and semantic issues of text mining. ACM SIGMOD Record, 23-34.
V. RAGHAVAN a, V., & S. JUNG , G. (1989). A Critical Investigation of Recall and Precision as Measures of Retrieval System Performance. ACM Transactions on Information Systems, , 206-229.
Wang, Z. (2017). The Evaluation of Ensemble Sentiment Classification Approach on Airline Services Using Twitter. Dublin : Dublin Institute of Technology.
Wang, Z. (2017). The Evaluation of Ensemble Sentiment Classification Approach on Airline Services Using Twitter. Dublin: Dublin Institute of Technology.
Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., & Ma, S. (2014). Explicit Factor Models for Explainable Recommendation based on Phrase-level Sentiment Analysis. SIGIR '14 Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval (ص. 83-92). Queensland: ACM.
Zhang, Y., Zhang, H., Cai, J., & Yang, B. (2014). A Weighted Voting Classifier Based on Differential Evolution. Abstract and Applied Analysis. بازیابی از http://dx.doi.org/10.1155/2014/376950
Zubair Asghar, M., Khan, A., Ahmad, S., & Kundi, F. (2014). A Review of Feature Extraction in Sentiment Analysis. Journal of Basic and Applied Scientific Research, 181-186.